

Intended for

**Test Valley Borough Council** 

Project no.

61020588

Date

07 June 2012

# TVBC DEVELOPMENT IMPACT NORTH BADDESLEY CROSSROADS - 2012 UPDATE



#### **Revision History**

| Revision | Date     | Purpose/Status    | Document Ref.    | Comments |
|----------|----------|-------------------|------------------|----------|
| -        | 06.06.12 | For comment/draft | 61020588/TRANS/1 |          |
|          |          |                   |                  |          |

Prepared By

Reviewed By

Approved By

Nidhish George

Transport Consultant

Peter Syddall

Ken Dudley

Principal Consultant

Project Associate

#### Ramboll

Carlton House Ringwood Road Woodlands Southampton SO40 7HT United Kingdom

tel +44 (0)23 8081 7500 fax +44 (0)23 8081 7600 southampton@ramboll.co.uk



|    | NIT | NIT |   |
|----|-----|-----|---|
| CU | N٦  | N I | 3 |

| 1.    | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2.    | DEVELOPMENT OF JUNCTION MODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 |
| 3.    | TRIP GENERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 |
| 4.    | TRIP DISTRIBUTION AND ASSIGNMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 |
| 5.    | JUNCTION ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 |
| TAB   | LES CONTRACTOR OF THE PROPERTY |   |
| TABL  | E 1.1 TRAFFIC GROWTH FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 |
| TABL  | E 2.1 COMPARISON OF MODELLED QUEUES AND OBSERVED QUEUES AM PEAK HOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 |
| TABL  | E 2.2 NORTH BADDESLEY CROSSROADS 2008 AND 2012 BASE FLOWS, AM PEAK HOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 |
| TABLE | E 3.1 DEVELOPMENT PROPOSALS AND TRIP GENERATION, AM PEAK HOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 |
| TABLE | E 4.1 PREDICTED TURNING MOVES (2012 + ALL STV DEVELOPMENTS)1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 |
| TABL  | E 4.2 PREDICTED TURNING MOVES (2012 + NORTH BADDESLEY DEVELOPMENT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 |
| TABL  | E 4.3 PREDICTED TURNING MOVES (FUTURE 2031, ALL DEVELOPMENTS) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |
| TABL  | E 5.1 LINSIG MODELLING OUTPUT FOR 2012 AND 2012+ DEVELOPMENT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 |
| TABL  | E 5.2 MODELLING OUTPUT FOR BASE AND BASE + NORTH BADDESLEY DEVELOPMENT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 |
| TABLE | E 5.3 MODELLING OUTPUT FOR 2031 BASE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 |
|       | E 5.4 MODELLING OUTPUT FOR BASE + ALL STV DEVELOPMENT, WITH JUNCTION  OVEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| FIG   | URES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| FIGUE | RE 1.1 NORTH BADDESLEY CROSS ROADS LOCATION PLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 |
| FIGUE | RE 1.2 CHANGE IN TRAFFIC FLOW PATTERNS ON THE A3090 ROMSEY BYPASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 |
| FIGUF | RE 1.3 2008 SURVEYED BASE FLOWS AM PEAK HOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 |
| FIGUE | RE 1.4 FACTORED BASE TRAFFIC FLOWS TO REPRESENT 2012 FLOWS AM PEAK HOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 |

#### **APPENDICES**

APPENDIX A - TRAFFIC SURVEY RESULTS

APPENDIX B - TRIP MATRICES AND TURNING MOVEMENT CALCULATIONS

APPENDIX C - LINSIG OUTPUTS



#### 1. INTRODUCTION

#### 1.1. Background

- 1.1.1. A technical note (Ref: 14780/TR02A, July 2008), assessing the impacts of development proposals in Southern Test Valley on the Botley Road/Rownhams Road junction in North Baddesley, was prepared by Gifford (now Ramboll) in 2008 as a background document to the Core Strategy, which was submitted by Test Valley Borough Council to the Secretary of State in March 2009. Following the Exploratory Meeting that was held in May 2009, the Council decided to withdraw the Core Strategy. Work has since been undertaken to revise the Core Strategy which has included a focused 'key issues' consultation, updating the evidence base and also taking account of the various policy changes that came into effect since the first Core Strategy was initially produced.
- 1.1.2. This technical note has been prepared by Ramboll for Test Valley Borough Council and provides a review of the previous technical note, taking into account the latest Core Strategy proposals and also any changes to standard traffic growth predictions issued by the Department of Transport (DfT) since the original 2008 Gifford Technical Note. The current development proposals are contained within the Core Strategy Preferred Development Options document, January 2012. Details of the development sites have been included in section 3 of this report. The Botley Road/Rownhams Road junction will be referred to as the 'North Baddesley crossroads' in this report.
- 1.1.3. Under the previous assessment, a LINSIG junction capacity model was developed to enable assessment of the traffic impact of the development sites on the North Baddesley crossroads. The turning moves at the junction were obtained through a traffic survey. The likely distribution of trips from the proposed developments was derived from Census 2001 journey to work information. The identification of the proportion of those trips likely to pass through the junction was manually estimated on the basis of the probable routeing of the trips across the local network, to and from the development sites. The same broad methodology is employed in this report.

#### 1.2. Site Location

The North Baddesley junction is a four arm signalised junction, formed by the A27 Botley Road to the east and west, Nutburn Road to the north and Rownhams Road to the south, as shown in Figure 1.1 overleaf.



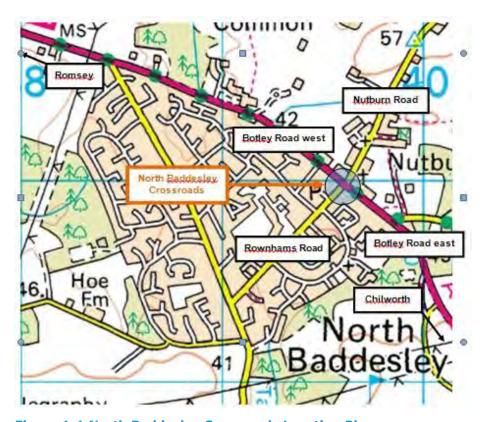



Figure 1-1 North Baddesley Crossroads Location Plan

## 1.3. Background Traffic Flow Information

#### Observed Traffic Growth

- 1.3.1. The previous Technical Note was based on 2008 traffic data. Traditionally, growth in general traffic flows would have been expected since then in North Baddesley, as elsewhere. However over recent years UK economic growth has slowed, petrol prices have risen and new development has been slow coming forward. Hence traffic growth locally, year by year, may not have occurred as might have been anticipated previously.
- 1.3.2. Annual Average Daily Traffic (AADT) information provided by Hampshire Council for a permanent count site on the A3090 Romsey Bypass (Site Ref: 34200002) gives an indication of the changes in local traffic flows in this area, over the period 2003-2011. The AADT flows are shown in Figure 1.2. It can be seen from the analysis of this AADT data that, for this section of road, whilst the general trend was for traffic flows to rise between 2003 and 2008, since that time traffic flows have fallen (by about 5%, 2008-2011). Other permanent count sites on the A27 at Sherfield English and the A3057 at Mottisfont tell the same story.



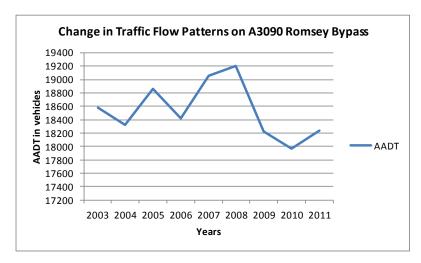



Figure 1-2 Change in Traffic Flow Patterns on the A3090 Romsey Bypass

1.3.3. Also, Test Valley Borough Council has provided recent traffic survey information for the Romsey area. These surveys, summarised in Table 1.1 also suggest no real growth and/or possible reductions in traffic flows.

Table 1-1 Change in Traffic Flow Patterns on Key Routes in Romsey

| Location              |      | Two Way AM Peak Hour<br>Traffic Flows |     |  |  |  |  |
|-----------------------|------|---------------------------------------|-----|--|--|--|--|
|                       | 2007 | (March) 2012                          |     |  |  |  |  |
| A27 Luzborough Lane   | 1368 | 1365                                  | 0%  |  |  |  |  |
| A27 Southampton Road  | 1893 | 1982                                  | -4% |  |  |  |  |
| A27 By Pass Road      | 1982 | 2157                                  | -8% |  |  |  |  |
| Alma Road             | 889  | 957                                   | -7% |  |  |  |  |
| A3090 Winchester Road | 1618 | 1718                                  | -6% |  |  |  |  |

1.3.4. It is therefore considered reasonable to assume that the traffic flows passing through the North Baddesley crossroads have not materially increased, and in fact possibly reduced, since the previous Technical Note.

#### Predicted Traffic Growth

- 1.3.5. The DfT provides standard traffic growth predictions which enables future year traffic flows to be predicted, based on observed traffic flows. The baseline traffic flows for the previous Technical Note assessment were established through a traffic survey in April 2008. The results of this survey are enclosed in Appendix A.
- 1.3.6. In order to predict current traffic flows from past traffic data it would be normal practice to apply the DfT defined growth rates for this area, obtained from the TEMPRO 6.2 and National Traffic Model (NTM) databases. Following this methodology, traffic growth factors can be applied to the 2008 flows in order to predict the theoretical, 'current' 2012 flows. These 2012 flows can then form the base flows from which to assess the impacts on the North Baddesley crossroads of the development proposals within the latest Core



Strategy. As stated in paragraph 1.3.2, traffic flows generally in the area are likely to have remained largely unchanged or reduced since 2008 rather than having increased. It is considered therefore that 2008 traffic flows factored using TEMPRO/NTM factors to 2012 will represent an overestimate of current traffic flows – a 'worst case' scenario.

1.3.7. The AM peak was taken as the critical period to be assessed for the purposes of the previous Technical Note. It can be seen that the TEMPRO/NTM growth factor shown in Table 1.1 suggests a growth of about 5% over the period 2008-2012. This in contrast to the observed fall in growth of 5% observed on Romsey By Pass, 2008-2011. Table 1.1 also shows the growth factor to the end of the Core Strategy period (2008-2031).

**Table 1-2 Traffic Growth Factor** 

| Period                   | 2008-2012 | 2008-2031 |
|--------------------------|-----------|-----------|
| TEMPRO/NTM Growth Factor | 1.048     | 1.232     |

1.3.8. The surveyed 2008 flows and the predicted 'worst case' factored 2012 flows, for the AM peak between 8:00 and 9:00, are given in Figure 1.2 and 1.3. The peak hour vehicle flows are converted into PCUs (passenger car units. PCUS represent vehicles in terms of the equivalent number of axle pairs) for the LINSIG calculation.

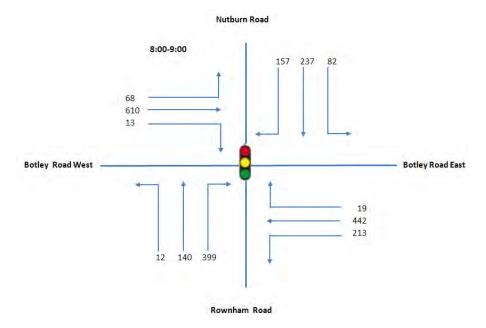





Figure 1-3 2008 Surveyed Base Flows AM Peak Hour

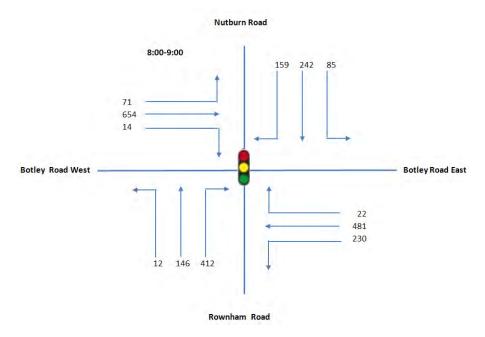



Figure 1-4 Factored Base Traffic Flows to Represent 2012 Flows AM Peak Hour



#### 2. DEVELOPMENT OF JUNCTION MODEL

- 2.1.1. A LINSIG model was developed for the North Baddesley crossroads, to represent 2008 flows, in order to provide a benchmark to assess its performance following the addition of the proposed development traffic. The signal specification obtained from Hampshire County Council was used to determine the average green times and intergreen values for the various phases under the 'SCOOT' signal operating system.
- 2.1.2. In the absence of any information regarding the occurrence of pedestrian demand at the North Baddesley crossroads, it has been assumed that there is a pedestrian stage in every cycle for all the scenarios modelled. This tends to provide a 'worst case' scenario.
- 2.1.3. In order to validate the LINSIG model with the observed queue lengths, the saturation flows were adjusted to reflect the surveyed (2008) traffic conditions at the crossroads. As the surveyed queue data is recorded separately for both lanes at the approach on Nutburn Road and Botley Road, queue values are summed over the lanes across the survey period and averaged to get the mean queue for that arm.
- 2.1.4. A comparison of the LINSIG modelled queuing results against the observed queues is given in Table 2.1. It can be seen that the model queues are reasonably consistent with the observed values (An exact match is not possible as adjustment to one arm can then produce a disproportionate change elsewhere. Hence a 'best fit' is made).

| Scenario  | Approach            | Modelled<br>Mean Max<br>Queues | Degree of<br>Saturation<br>(%) | Observed<br>Queues |
|-----------|---------------------|--------------------------------|--------------------------------|--------------------|
|           | Nutburn<br>Road     | 19                             | 88.8                           | 13                 |
| 2008 Base | Botley Road<br>West | 29                             | 94.3                           | 30                 |
| zuuo Base | Rownhams<br>Road    | 25                             | 96.4                           | 26                 |
|           | Botley Road<br>West | 22                             | 76.8                           | 19                 |

Table 2-1 Comparison of Modelled Queues and Observed Queues AM Peak Hour

- 2.1.5. As can be seen from the queue values and the Degree of Saturation (a measure of capacity), the junction was predicted to be operating close to capacity in 2008, with the highest degree of saturation on the A27 Botley Road West and Rownhams Road approaches in the morning peak period. Relatively high queuing on Rownhams Road is a direct consequence of the heavy right turning traffic on that arm and the absence of a dedicated lane for this turning traffic.
- 2.1.6. It should be noted that the crossroads junction has been assessed in isolation. The queuing on Botley Road east will be influenced by the rate of flow of traffic through the Botley Road/Castle Lane junction.



2.1.7. The validated LINSIG model has been used to predict the 2012 situation, using the DfT growth factors. The resulting mean maximum queues and degrees of saturation are shown in Table 2.2 below. The 2008 base results are included for comparison purposes.

|                     | 2008                           | Base                           | 2012 Current (predicted)       |                                |  |  |  |
|---------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--|--|--|
| Approach            | Modelled<br>Mean Max<br>Queues | Degree of<br>Saturation<br>(%) | Modelled<br>Mean Max<br>Queues | Degree of<br>Saturation<br>(%) |  |  |  |
| Nutburn<br>Road     | 19                             | 88.8                           | 21                             | 93.1                           |  |  |  |
| Botley Road<br>West | 29                             | 94                             | 32                             | 96.4                           |  |  |  |
| Rownhams<br>Road    | 25                             | 96                             | 24                             | 93.8                           |  |  |  |
| Botley Road<br>East | 22                             | 76.8                           | 24                             | 78.5                           |  |  |  |

Table 2-2 North Baddesley Crossroads 2008 and 2012 Base Flows, AM Peak Hour

- 2.1.8. Table 2.2 shows that the modelled Mean Maximum Queues and the Degrees of Saturation are slightly higher in 2012 than the 2008 base scenario, with the exception of Rownhams Road. (The model seeks to optimise the performance of the junction by adjusting the green time given to each arm, which may lead to one or more arms 'improving' whilst others experience higher degrees of saturation).
- 2.1.9. It is worth noting again that this assessment is based on applying a growth factor of about 5% to the 2008 base flows, whereas it is likely that local traffic flows in the area have not grown since 2008. Hence, in practice, it is likely that the junction is currently operating in a similar manner to how it was operating in 2008.



#### 3. TRIP GENERATION

- 3.1.1. The trip generation methodology used in this Technical Note is the same as that adopted for the previous 2008 study. The methodology is reproduced below.
- 3.1.2. Test Valley Borough Council has identified the proposed scale of development in each of the settlements in Romsey, North Baddesley and Nursling. The proposed development for southern Test Valley includes residential allocations for each of these settlements plus an employment allocation at Nursling. The trips between the residential proposals and the employment allocation will be included in the trips generated by the residential element and assigned to the local road network. Hence there is no need for an additional assignment of trips to the employment proposal onto the network from the residential development proposals. The trips coming into and out of the employment site at Nursling from origins further away are highly unlikely to travel through North Baddesley and are therefore assumed to not travel through the crossroads.
- 3.1.3. Trip rates for the proposed development in southern Test Valley are the same as those used in the Romsey Movement and Access Study Review Phase II report (Ref: 14780/TR02A). The scale of development, the associated trip rates and the resulting number of trips generated in the AM peak hour are shown in Table 3.1. The development within North Baddesley is on the west side of the settlement as proposed in the Core Strategy.
- 3.1.4. Following the latest revision of the Core Strategy, the number of dwellings in North Baddesley has been reduced from 500 to 300 and the number of dwellings in Nursling has been increased from 300 to 350, as reflected in Table 3.1. The assessment in this Technical Report takes account of these changes.

Table 3-1 Development Proposals and Trip Generation, AM Peak Hour

| Development<br>Location | No of     | Trip | Rates | Total Trips |      |  |
|-------------------------|-----------|------|-------|-------------|------|--|
| Residential             | Dwellings | In   | Out   | In          | Out  |  |
| Romsey                  | 2300      | 0.15 | 0.465 | 345         | 1070 |  |
| North<br>Baddesley      | 300       | 0.15 | 0.456 | 45          | 140  |  |
| Nursling                | 350       | 0.15 | 0.456 | 53          | 163  |  |



#### 4. TRIP DISTRIBUTION AND ASSIGNMENT

- 4.1.1. The trip distribution and assignment methodology used in this Technical Note is the same as that adopted for the previous 2008 study. The methodology is reproduced below.
- 4.1.2. The likely distribution of development trips between settlements where development is proposed and other destinations has been estimated on the basis of journey to work data from 2001 census data. The resulting Origin Destination trip matrix has been included in Appendix B of this report. This has enabled the proportion of trips between the different origin and destination pairs to be identified. It should be noted that the census data provides a distribution of work trips only. This will tend to overestimate the number of trips leaving the identified settlements and underestimate the number of trips remaining within a settlement that have a trip purpose other than journey to work. Hence the number of trips passing through North Baddesley from Romsey (and Nursling) is likely to be a 'worst case' assessment.
- 4.1.3. Once the journey to work trip proportions matrix was established, those trips likely to go through North Baddesley crossroads were identified and the most probable routing of trips through the crossroads was also determined. Turning move matrices were arrived at on this basis by considering only those O-D pairs which are likely to impact on the crossroads. Detailed trip matrices are provided in Appendix B of this report.
- 4.1.4. The previous 2008 Technical Note assessed the possible impacts of development at the base year (2008) and the end of the South East Plan (now withdrawn), 2026. For the purpose of this study three scenarios have been assessed:
  - 2012 base + all Southern Test Valley (STV) development: The predicted current AM peak hour (2012) flows, plus all proposed STV development, to gauge the impact of the development relative to current conditions;
  - 2012 base + North Baddesley: The predicted current AM peak hour (2012) flows, plus proposed development in North Baddesley only, to gauge the impact of this development relative to current conditions; and
  - Future year (2031): Future 2031 AM peak hour flows based on DfT growth factors, with allowance for all development in the area, at the end of the Core Strategy period.
- 4.1.5. The resultant turning movement estimates for the different arms of the North Baddesley crossroads are shown in Tables 4.1, 4.2 and 4.3 overleaf.



**Table 4-1 Predicted Turning Moves (2012 + all STV developments)** 

|       |     | Existin | g Flows | (2012) |       |   | Devel | opment l | Flows |       | Existir | g Flows | + All STV | / Develop | ments |
|-------|-----|---------|---------|--------|-------|---|-------|----------|-------|-------|---------|---------|-----------|-----------|-------|
|       |     |         | С       | D      | Total |   |       | С        | D     | Total |         |         | С         | D         | Total |
| A     | 0   | 159     | 242     | 85     | 486   | 0 | 0     | 2        | 0     | 2     | 0       | 159     | 244       | 85        | 488   |
| В     | 71  | 0       | 14      | 654    | 739   | 0 | 0     | О        | 144   | 144   | 71      | 0       | 14        | 798       | 883   |
| С     | 146 | 12      | Ο       | 412    | 570   | 5 | 0     | Ο        | 42    | 47    | 151     | 12      | Ο         | 454       | 617   |
| D     | 22  | 481     | 230     | 0      | 733   | 0 | 47    | 12       | Ο     | 59    | 22      | 528     | 242       | 0         | 792   |
| Total | 239 | 652     | 486     | 1151   | 2528  | 5 | 47    | 14       | 186   | 252   | 244     | 699     | 500       | 1337      | 2780  |

Notes: [A] - Nutburn Road, [B] - Botley Road West, [C] - Rownhams Road, [D] - Botley Road East

**Table 4-2 Predicted Turning Moves (2012 + North Baddesley development)** 

|       | Existing Flows (2012) |     |     |      |       | North | North Baddesley Development Flows |    |    |       | Existing Flows + North Baddesley Development |     |     |      |       |
|-------|-----------------------|-----|-----|------|-------|-------|-----------------------------------|----|----|-------|----------------------------------------------|-----|-----|------|-------|
|       |                       |     | С   | D    | Total |       |                                   | С  | D  | Total |                                              |     | С   | D    | Total |
| A     | 0                     | 159 | 242 | 85   | 486   | 0     | 0                                 | 2  | 0  | 2     | 0                                            | 159 | 244 | 85   | 488   |
| В     | 71                    | 0   | 14  | 654  | 739   | 0     | 0                                 | 0  | 0  | 0     | 71                                           | 0   | 14  | 654  | 739   |
| С     | 146                   | 12  | 0   | 412  | 570   | 5     | 0                                 | О  | 42 | 47    | 151                                          | 12  | 0   | 454  | 617   |
| D     | 22                    | 481 | 230 | 0    | 733   | 0     | 0                                 | 12 | 0  | 12    | 22                                           | 481 | 242 | 0    | 745   |
| Total | 239                   | 652 | 486 | 1151 | 2528  | 5     | 0                                 | 14 | 42 | 61    | 244                                          | 652 | 500 | 1193 | 2589  |



**Table 4-3 Predicted Turning Moves (Future 2031, all developments)** 

|       | Existing Flows (2012) |     |     |      |       |     | 2031 Base Flows (Growth Factor=1.2315) |     |      |       |  |
|-------|-----------------------|-----|-----|------|-------|-----|----------------------------------------|-----|------|-------|--|
|       |                       |     | С   | D    | Total |     |                                        | С   | D    | Total |  |
| Α     | 0                     | 159 | 242 | 85   | 486   | 0   | 187                                    | 284 | 100  | 571   |  |
| В     | 71                    | 0   | 14  | 654  | 739   | 84  | 0                                      | 16  | 768  | 868   |  |
| С     | 146                   | 12  | 0   | 412  | 569   | 171 | 14                                     | 0   | 484  | 669   |  |
| D     | 22                    | 481 | 230 | 0    | 733   | 26  | 565                                    | 270 | 0    | 861   |  |
| Total | 239                   | 652 | 486 | 1151 | 2528  | 281 | 766                                    | 570 | 1352 | 2969  |  |



#### 5. JUNCTION ANALYSIS

#### 5.1. Introduction

5.1.1. The effect of the development traffic on the crossroads has been assessed by inputting the various scenario flows into the LINSIG model, using the flows shown in Tables 4.1, 4.2 and 4.3. The 'Practical Reserve Capacity' (PRC) is also quoted in the following summary tables as it gives a measure of the overall capacity for the junction.

#### 5.2. 2012 Base Plus All STV Developments

5.2.1. Table 5.1 provides a comparison of the performance of the junction with the base (2012) flows and the base plus all STV development traffic. The full model outputs are attached in Appendix C.

Table 5-1 LINSIG Modelling Output for 2012 and 2012+ Development

|                     |                                | 2012 Base                      |       | 2012 + All STV Development     |                                |       |  |  |
|---------------------|--------------------------------|--------------------------------|-------|--------------------------------|--------------------------------|-------|--|--|
| Approach            | Modelled<br>Mean Max<br>Queues | Degree of<br>Saturation<br>(%) | PRC % | Modelled<br>Mean Max<br>Queues | Degree of<br>Saturation<br>(%) | PRC % |  |  |
| Nutburn<br>Road     | 21                             | 93.1                           |       | 34                             | 104.4                          |       |  |  |
| Botley Road<br>West | 32                             | 96.4                           | 7.1   | 67                             | 107.1                          | 10    |  |  |
| Rownhams<br>Road    | 24                             | 93.8                           | -7.1  | 45                             | 105.5                          | -19   |  |  |
| Botley Road<br>East | 24                             | 78.5                           |       | 25                             | 78.9                           |       |  |  |

5.2.2. The LINSIG analysis demonstrates that, because the junction is predicted to be operating close to or at capacity without the proposed STV developments, the addition of this development traffic increases the degree of saturation and queue lengths. The overall effect is therefore to increase the likely delays for traffic. The most noticeable increase in queuing occurs on Botley Road west. As mentioned in the previous section, the large number of right turners and the lack of a dedicated lane for right turners affects the capacity of the Rownhams Road approach.

#### 5.3. 2012 Base Plus North Baddesley Development

5.3.1. The model has also been run with traffic flows generated by only the North Baddesley development proposals added to the base flows. This allows the impact of North Baddesley development on the crossroads to be viewed in isolation. Table 5.2 demonstrates that the junction may perform slightly worse than the base scenario with a PRC of - 9.5%. The junction is running close to capacity, with queuing similar to the situation without development, on all arms. This assessment indicates that the proposed development in North Baddesley, on its own, has only a marginal effect on the predicted queues compared with the existing situation. Hence it is the effect of development in other settlements that has the predominant impact.



Table 5-2 Modelling Output for Base and Base + North Baddesley Development

|                     |                                | 2012 Base                      |       | 2012 +                         | North Baddes                   | sley  |
|---------------------|--------------------------------|--------------------------------|-------|--------------------------------|--------------------------------|-------|
| Approach            | Modelled<br>Mean Max<br>Queues | Degree of<br>Saturation<br>(%) | PRC % | Modelled<br>Mean Max<br>Queues | Degree of<br>Saturation<br>(%) | PRC % |
| Nutburn<br>Road     | 21                             | 93.1                           |       | 26                             | 98.6                           |       |
| Botley Road<br>West | 32                             | 96.4                           | 7.1   | 32                             | 96.4                           | -9.5  |
| Rownhams<br>Road    | 24                             | 93.8                           | -7.1  | 30                             | 98.2                           | -9.5  |
| Botley Road<br>East | 23                             | 78.5                           |       | 25                             | 79.8                           |       |

#### 5.4. Future (2031) Year Flows

- 5.4.1. As a sensitivity test, 2031 conditions were modelled by factoring the 2008 AM peak base flows by a growth factor of 1.232, calculated using TEMPRO (v6.2). This growth factor takes into account proposed development in the south Hampshire area (including those in STV), as it affects North Baddesley. Table 5.3 provides the model output for 2031 predictions. The predictions for 2026, from the previous Technical Note, are included in the Table for comparison.
- 5.4.2. The modelling results indicate that the junction would be operating over capacity with significant queuing on all arms in 2031, if traffic growth occurs as per current DfT predictions.

Table 5-3 Modelling Output for 2031 Base

|                     | Fu                             | ture - 2031                    |          | Fu                                | ıture - 2026                   |          |
|---------------------|--------------------------------|--------------------------------|----------|-----------------------------------|--------------------------------|----------|
| Approach            | Modelled<br>Mean Max<br>Queues | Degree of<br>Saturation<br>(%) | PRC<br>% | Modelled<br>Mean<br>Max<br>Queues | Degree of<br>Saturation<br>(%) | PRC<br>% |
| Nutburn<br>Road     | 50                             | 109.4                          |          | 35                                | 102.9                          |          |
| Botley Road<br>West | 87                             | 113.2                          | 25.0     | 61                                | 106.6                          | 10.4     |
| Rownhams<br>Road    | 62                             | 110.2                          | -25.8    | 41                                | 103.7                          | -18.4    |
| Botley Road<br>East | 33                             | 92.2                           |          | 28                                | 86.8                           |          |

5.4.3. The comparison with the end year (2026) tested in the previous Technical Note shows that the modelled Mean Maximum Queues and the Degrees of Saturation for 2031, not surprisingly would be higher than in 2026. However, as discussed earlier, recent traffic data for the local area suggests that traffic levels have not been rising since 2008. The longer term effects on traffic growth of the current and future economic trends are



uncertain at present. Also, there is evidence of a significant period of little or no traffic growth in the local area and this will tend to delay further traffic growth. This would suggest that the junction assessment predictions for 2031 are likely to be an overestimate. Hence it is likely that the level of impacts now predicted for 2031 will be similar to those previously predicted for 2026.

#### 5.5. Mitigation Measures at the Junction

- 5.5.1. The junction operates under a current signal plan with a maximum overall cycle time of 120 seconds. Increasing the cycle time beyond this maximum accepted cycle time is not considered a viable option. Additional dedicated right turning lanes on Rownhams Road and Nutburn Road would improve the operation of the junction. This strategy would reduce queuing on the two minor roads, thereby making it possible for the reassignment of additional green times to the main Botley Road approaches.
- 5.5.2. The effect of adding an extra lane on the minor roads has been tested with the 2012 + all STV development demand flows. Table 5.4 provides a summary of this scenario. It is evident that this scenario provides a reduction in the predicted delays with development, returning the queue lengths to a level similar to the queues predicted for the 2012 base scenario. The full model outputs are attached in Appendix C of this report.

Table 5-4 Modelling Output for Base + all STV Development, with Junction Improvement

| Approach            |                                | 2012 Base<br>Improvement)      |       |                                | Il STV Develop<br>itional Lane of<br>Arms) |       |
|---------------------|--------------------------------|--------------------------------|-------|--------------------------------|--------------------------------------------|-------|
| Арргоасп            | Modelled<br>Mean Max<br>Queues | Degree of<br>Saturation<br>(%) | PRC % | Modelled<br>Mean Max<br>Queues | Degree of<br>Saturation<br>(%)             | PRC % |
| Nutburn<br>Road     | 21                             | 93.1                           |       | 18                             | 82                                         |       |
| Botley Road<br>West | 32                             | 96.4                           | -7.1  | 30                             | 86.9                                       | 3.5   |
| Rownhams<br>Road    | 24                             | 93.8                           | -7.1  | 22                             | 84.1                                       | 3.5   |
| Botley Road<br>East | 23                             | 78.5                           |       | 21                             | 64                                         |       |

5.5.3. It is clear however from site observations that a significant improvement involving road widening would be difficult to achieve within the existing highway boundary. There may be opportunities for adjustments to the existing carriageways to provide short stacking areas for right turning vehicles on the Nutburn Road or Rownhams Road approaches, but this would require more detailed investigation.

#### 5.6. Other Mitigation Measures

5.6.1. The assessment of the future performance of the North Baddesley crossroads has been based on traffic growth predictions, representing long term trends in prevailing car use behaviour and travel patterns. The proposed development in Southern Test Valley contained within the Core Strategy covers the period up to 2031.



- 5.6.2. Test Valley Borough Council are actively promoting, and seeking to enable, more sustainable travel behaviour over this plan period. Major improvements in access to Romsey Railway Station have been implemented in 2010/11 with: improved car parking; a new ramped access for pedestrians and cyclists to the far platform linking to other cycle routes; a bus turning area; drop off points; and more disabled parking all being provided. A Station Travel Plan was prepared in 2010 and is in the process of being reviewed and updated to further improve access to and facilities at the station. The aim is to increase rail usage particularly between Romsey, Chandlers Ford, Eastleigh and Southampton. There is a cycle route between Romsey and Chandlers Ford. Bus quality partnerships are in place or being developed with the aim of improving bus services. Over time, these and other similar measures will contribute towards reductions in demands to travel by car.
- 5.6.3. Hence over the period of the Core Strategy, it is likely that many factors will influence traffic growth. Future car trip generation rates from new and existing development will reflect both national and local influences, including the measures being taken forward by the Borough Council.

#### 5.7. Conclusions

- 5.7.1. An analysis of the performance of the existing North Baddesley crossroads, using DfT growth factors to derive 2012 base flows, predicts that the junction is currently operating close to or at capacity without the proposed development within STV. The addition of traffic generated by the STV development allocations is predicted to increase delays and queuing. However, local traffic count data indicates that there has been no real growth in traffic since the previous study which tested the crossroads on the basis of observed 2008 traffic flows. Hence, it is likely that the junction is currently operating in a manner similar to how it was operating in 2008. The predicted performance at 2012, with or without development is, therefore, likely to be a worst case prediction.
- 5.7.2. An assessment indicates that the proposed development in North Baddesley, on its own, has only a marginal effect on the predicted 2012 base queues compared with the existing situation. Hence it is the effect of development in other settlements that has the predominant impact.
- 5.7.3. A comparison with the end year (2026) assessed in the previous Technical Note shows that the modelled Mean Maximum Queues and the Degrees of Saturation for 2031, using the latest DfT traffic growth predictions are, not surprisingly, higher than those predicted for 2026. However, recent traffic data for the local area suggests that traffic levels have not been rising since 2008. The longer term effects on traffic growth of the current and future economic trends are uncertain at present. Also, there is evidence of a significant period of little or no traffic growth in the local area and this will tend to delay further traffic growth. This would suggest that the junction assessment predictions for 2031 are likely to be an overestimate. Hence it is likely that the level of impacts now predicted for 2031 may be similar to those previously predicted for 2026.
- 5.7.4. The predictions for 2031 highlight the fact that the absence of right turn lanes on the Rownhams Road and Nutburn Lane approaches to the crossroads affects the capacity of these arms and in turn affects the length of green signal time that can be allocated to the main west-east Botley Road route and the consequent levels of queuing. Provision of right turn lanes or short stacking areas for right turning vehicles would improve the performance of the junction, but there are land constraints for such modifications.



- 5.7.5. The assessment of the future performance of the North Baddesley crossroads has been based on traffic growth predictions, representing long term trends in prevailing car use behaviour and travel patterns. The proposed development in Southern Test Valley contained within the Core Strategy covers the period up to 2031. Test Valley Borough Council are actively promoting, and seeking to enable, more sustainable travel behaviour over this plan period.
- 5.7.6. It is considered therefore, that the general conclusions made in the previous report remain valid, i.e.:
  - the crossroads are operating at or close to capacity without the planned future development in southern Test Valley;
  - the planned development is likely to increase the degree of saturation at the junction, but the proposed development in North Baddesley in isolation is predicted to have minimal effect;
  - by the end of the plan period (now 2031) the junction is predicted to be operating over capacity (if the current traffic growth predictions materialise);
  - the provision of right turn lanes or stacking space on the Rownhams Road and Nutburn Lane approaches would make a significant contribution towards improving the operation of the junction, but there are land constraints for such modifications:
  - The Borough Council is promoting a series of measures that will contribute towards less car use and more sustainable travel. Such measures will assist in reducing the traffic impacts of new development on locations such as North Baddesley.



## **APPENDICES**

APPENDIX A - TRAFFIC SURVEY RESULTS

APPENDIX B - TRIP MATRICES AND TURNING MOVEMENT CALCULATIONS

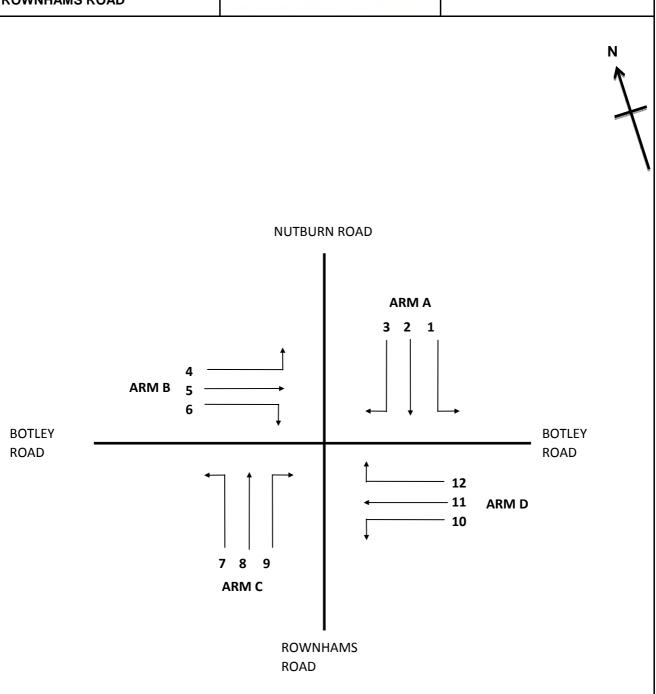
APPENDIX C - LINSIG OUTPUTS

## RAMBOLL

# TVBC DEVELOPMENT IMPACT NORTH BADDESLEY CROSSROADS - 2012 UPDATE

## **APPENDIX A**

TRAFFIC SURVEY RESULTS


SITE: 1

LOCATION: BOTLEY ROAD / ROWNHAMS ROAD

SURVEYS LTD
TRAFFIC DATA COLLECTION

DATE: 11TH MARCH 2008

DAY: THURSDAY



JOB TITLE: NORTH BADDESLEY

JOB NUMBER: 11187

SITE: 1 DATE: 11/03/2008



|        |     |         | MOVE    | MENT 1    |         |      |     |         | MOVE     | MENT 2  |         |     |     |         | MOVE    | MENT 3    |         |     |
|--------|-----|---------|---------|-----------|---------|------|-----|---------|----------|---------|---------|-----|-----|---------|---------|-----------|---------|-----|
| TIME   | F   | ROM NUT | BURN RO | AD TO BOT | LEY ROA | AD . | FRO | OM NUTB | URN ROAD | TO ROWN | NHAMS R | OAD | F   | ROM NUT | BURN RO | AD TO BOT | TLEY RO | AD  |
|        | CAR | LGV     | OGV1    | OGV2      | PSV     | TOT  | CAR | LGV     | OGV1     | OGV2    | PSV     | TOT | CAR | LGV     | OGV1    | OGV2      | PSV     | TOT |
| 07:00  | 0   | 0       | 0       | 0         | 0       | 0    | 14  | 3       | 0        | 0       | 0       | 17  | 9   | 5       | 0       | 0         | 0       | 14  |
| 07:15  | 8   | 0       | 0       | 0         | 0       | 8    | 15  | 4       | 1        | 0       | 0       | 20  | 15  | 2       | 1       | 0         | 0       | 18  |
| 07:30  | 12  | 2       | 0       | 0         | 0       | 14   | 35  | 1       | 0        | 0       | 0       | 36  | 24  | 3       | 0       | 0         | 0       | 27  |
| 07:45  | 9   | 1       | 0       | 0         | 0       | 10   | 34  | 2       | 0        | 0       | 0       | 36  | 19  | 3       | 0       | 0         | 0       | 22  |
| H/TOT  | 29  | 3       | 0       | 0         | 0       | 32   | 98  | 10      | 1        | 0       | 0       | 109 | 67  | 13      | 1       | 0         | 0       | 81  |
| 08:00  | 15  | 1       | 0       | 0         | 0       | 16   | 49  | 3       | 0        | 0       | 0       | 52  | 31  | 2       | 1       | 0         | 0       | 34  |
| 08:15  | 24  | 1       | 0       | 0         | 1       | 26   | 58  | 0       | 1        | 0       | 0       | 59  | 37  | 1       | 0       | 0         | 0       | 38  |
| 08:30  | 19  | 1       | 0       | 0         | 0       | 20   | 56  | 2       | 1        | 0       | 0       | 59  | 46  | 0       | 0       | 0         | 0       | 46  |
| 08:45  | 16  | 0       | 0       | 0         | 0       | 16   | 54  | 1       | 1        | 0       | 0       | 56  | 32  | 0       | 0       | 0         | 0       | 32  |
| H/TOT  | 74  | 3       | 0       | 0         | 1       | 78   | 217 | 6       | 3        | 0       | 0       | 226 | 146 | 3       | 1       | 0         | 0       | 150 |
| 09:00  | 12  | 2       | 0       | 0         | 0       | 14   | 31  | 1       | 0        | 0       | 0       | 32  | 23  | 3       | 0       | 0         | 0       | 26  |
| 09:15  | 6   | 1       | 0       | 0         | 0       | 7    | 14  | 2       | 0        | 0       | 1       | 17  | 10  | 0       | 0       | 0         | 0       | 10  |
| HH/TOT | 18  | 3       | 0       | 0         | 0       | 21   | 45  | 3       | 0        | 0       | 1       | 49  | 33  | 3       | 0       | 0         | 0       | 36  |
| P/TOT  | 121 | 9       | 0       | 0         | 1       | 131  | 360 | 19      | 4        | 0       | 1       | 384 | 246 | 19      | 2       | 0         | 0       | 267 |

SITE: 1 DATE: 11/03/2008



| TIME   | FI  | пом вот | MOVEN<br>LEY ROAD | MENT 4<br>TO NUTB | URN ROA | ND. |      | FROM BO |      | MENT 5<br>.D TO BOT | LEY ROAI | D    | FR  | OM BOTL | MOVE!<br>EY ROAD | MENT 6<br>TO ROWN | HAMS RC | DAD |
|--------|-----|---------|-------------------|-------------------|---------|-----|------|---------|------|---------------------|----------|------|-----|---------|------------------|-------------------|---------|-----|
|        | CAR | LGV     | OGV1              | OGV2              | PSV     | TOT | CAR  | LGV     | OGV1 | OGV2                | PSV      | TOT  | CAR | LGV     | OGV1             | OGV2              | PSV     | TOT |
| 07:00  | 2   | 1       | 0                 | 0                 | 0       | 3   | 84   | 10      | 1    | 1                   | 0        | 96   | 1   | 0       | 0                | 0                 | 0       | 1   |
| 07:15  | 9   | 2       | 0                 | 0                 | 0       | 11  | 116  | 13      | 1    | 1                   | 0        | 131  | 3   | 0       | 2                | 0                 | 0       | 5   |
| 07:30  | 11  | 3       | 0                 | 0                 | 0       | 14  | 158  | 20      | 0    | 1                   | 0        | 179  | 0   | 1       | 0                | 0                 | 0       | 1   |
| 07:45  | 17  | 0       | 0                 | 0                 | 0       | 17  | 133  | 11      | 0    | 2                   | 4        | 150  | 1   | 0       | 0                | 0                 | 0       | 1   |
| H/TOT  | 39  | 6       | 0                 | 0                 | 0       | 45  | 491  | 54      | 2    | 5                   | 4        | 556  | 5   | 1       | 2                | 0                 | 0       | 8   |
| 08:00  | 13  | 3       | 0                 | 0                 | 0       | 16  | 124  | 21      | 3    | 4                   | 4        | 156  | 2   | 0       | 0                | 0                 | 0       | 2   |
| 08:15  | 11  | 1       | 0                 | 0                 | 0       | 12  | 127  | 6       | 2    | 1                   | 0        | 136  | 1   | 0       | 1                | 0                 | 0       | 2   |
| 08:30  | 20  | 2       | 0                 | 0                 | 0       | 22  | 150  | 12      | 0    | 1                   | 0        | 163  | 3   | 0       | 0                | 0                 | 0       | 3   |
| 08:45  | 15  | 0       | 0                 | 0                 | 0       | 15  | 105  | 11      | 3    | 4                   | 4        | 127  | 4   | 0       | 1                | 0                 | 0       | 5   |
| H/TOT  | 59  | 6       | 0                 | 0                 | 0       | 65  | 506  | 50      | 8    | 10                  | 8        | 582  | 10  | 0       | 2                | 0                 | 0       | 12  |
| 09:00  | 15  | 1       | 0                 | 0                 | 0       | 16  | 105  | 16      | 0    | 4                   | 2        | 127  | 3   | 1       | 0                | 0                 | 0       | 4   |
| 09:15  | 28  | 3       | 2                 | 0                 | 1       | 34  | 95   | 11      | 3    | 7                   | 1        | 117  | 4   | 1       | 2                | 0                 | 0       | 7   |
| HH/TOT | 43  | 4       | 2                 | 0                 | 1       | 50  | 200  | 27      | 3    | 11                  | 3        | 244  | 7   | 2       | 2                | 0                 | 0       | 11  |
| P/TOT  | 141 | 16      | 2                 | 0                 | 1       | 160 | 1197 | 131     | 13   | 26                  | 15       | 1382 | 22  | 3       | 6                | 0                 | 0       | 31  |

SITE: 1 DATE: 11/03/2008



| TIME   | FR  | OM ROW | MOVE<br>NHAMS RO | MENT 7<br>OAD TO BC | TLEY RO | AD  | FRO | OM ROWN |      | MENT 8<br>AD TO NUT | TBURN R | OAD | FR  | OM ROW |      | MENT 9<br>DAD TO BC | TLEY RC | AD  |
|--------|-----|--------|------------------|---------------------|---------|-----|-----|---------|------|---------------------|---------|-----|-----|--------|------|---------------------|---------|-----|
|        | CAR | LGV    | OGV1             | OGV2                | PSV     | TOT | CAR | LGV     | OGV1 | OGV2                | PSV     | TOT | CAR | LGV    | OGV1 | OGV2                | PSV     | TOT |
| 07:00  | 2   | 0      | 0                | 0                   | 0       | 2   | 26  | 6       | 0    | 0                   | 0       | 32  | 50  | 8      | 1    | 0                   | 0       | 59  |
| 07:15  | 5   | 0      | 0                | 0                   | 0       | 5   | 28  | 8       | 0    | 0                   | 0       | 36  | 78  | 5      | 0    | 0                   | 1       | 84  |
| 07:30  | 3   | 1      | 0                | 0                   | 0       | 4   | 41  | 10      | 0    | 0                   | 0       | 51  | 121 | 10     | 3    | 0                   | 0       | 134 |
| 07:45  | 1   | 0      | 1                | 0                   | 0       | 2   | 37  | 8       | 1    | 0                   | 0       | 46  | 81  | 8      | 0    | 0                   | 2       | 91  |
| H/TOT  | 11  | 1      | 1                | 0                   | 0       | 13  | 132 | 32      | 1    | 0                   | 0       | 165 | 330 | 31     | 4    | 0                   | 3       | 368 |
| 08:00  | 3   | 0      | 0                | 0                   | 0       | 3   | 34  | 4       | 1    | 0                   | 0       | 39  | 116 | 9      | 2    | 0                   | 0       | 127 |
| 08:15  | 1   | 0      | 0                | 0                   | 0       | 1   | 29  | 2       | 0    | 0                   | 0       | 31  | 87  | 6      | 0    | 0                   | 0       | 93  |
| 08:30  | 3   | 0      | 0                | 0                   | 0       | 3   | 36  | 1       | 0    | 0                   | 0       | 37  | 99  | 3      | 0    | 0                   | 0       | 102 |
| 08:45  | 4   | 0      | 0                | 0                   | 0       | 4   | 25  | 2       | 0    | 0                   | 0       | 27  | 56  | 2      | 0    | 0                   | 1       | 59  |
| H/TOT  | 11  | 0      | 0                | 0                   | 0       | 11  | 124 | 9       | 1    | 0                   | 0       | 134 | 358 | 20     | 2    | 0                   | 1       | 381 |
| 09:00  | 7   | 0      | 2                | 0                   | 0       | 9   | 23  | 1       | 0    | 0                   | 0       | 24  | 81  | 3      | 1    | 0                   | 0       | 85  |
| 09:15  | 18  | 1      | 2                | 0                   | 0       | 21  | 17  | 2       | 0    | 0                   | 0       | 19  | 58  | 2      | 2    | 0                   | 1       | 63  |
| HH/TOT | 25  | 1      | 4                | 0                   | 0       | 30  | 40  | 3       | 0    | 0                   | 0       | 43  | 139 | 5      | 3    | 0                   | 1       | 148 |
| P/TOT  | 47  | 2      | 5                | 0                   | 0       | 54  | 296 | 44      | 2    | 0                   | 0       | 342 | 827 | 56     | 9    | 0                   | 5       | 897 |

SITE: 1 DATE: 11/03/2008



| TIME   | FR  | ом воть |      | IENT 10<br>TO ROWN | HAMS RO | AD  |     | FROM BO |      | MENT 11<br>D TO BOT | LEY ROAI | D   | F   | пом вот |      | IENT 12<br>TO NUTB | URN ROA | AD  |
|--------|-----|---------|------|--------------------|---------|-----|-----|---------|------|---------------------|----------|-----|-----|---------|------|--------------------|---------|-----|
|        | CAR | LGV     | OGV1 | OGV2               | PSV     | TOT | CAR | LGV     | OGV1 | OGV2                | PSV      | TOT | CAR | LGV     | OGV1 | OGV2               | PSV     | TOT |
| 07:00  | 15  | 2       | 0    | 0                  | 0       | 17  | 56  | 7       | 1    | 2                   | 0        | 66  | 6   | 1       | 0    | 0                  | 0       | 7   |
| 07:15  | 27  | 5       | 0    | 0                  | 1       | 33  | 77  | 16      | 4    | 0                   | 1        | 98  | 5   | 5       | 0    | 0                  | 0       | 10  |
| 07:30  | 40  | 0       | 2    | 0                  | 1       | 43  | 110 | 13      | 3    | 1                   | 0        | 127 | 6   | 0       | 0    | 0                  | 0       | 6   |
| 07:45  | 27  | 4       | 1    | 0                  | 1       | 33  | 88  | 16      | 3    | 0                   | 0        | 107 | 6   | 4       | 0    | 0                  | 0       | 10  |
| H/TOT  | 109 | 11      | 3    | 0                  | 3       | 126 | 331 | 52      | 11   | 3                   | 1        | 398 | 23  | 10      | 0    | 0                  | 0       | 33  |
| 08:00  | 48  | 5       | 1    | 0                  | 0       | 54  | 85  | 13      | 4    | 1                   | 1        | 104 | 3   | 2       | 0    | 0                  | 0       | 5   |
| 08:15  | 36  | 7       | 2    | 0                  | 0       | 45  | 87  | 13      | 1    | 1                   | 1        | 103 | 2   | 0       | 0    | 0                  | 0       | 2   |
| 08:30  | 45  | 4       | 0    | 0                  | 2       | 51  | 106 | 12      | 5    | 2                   | 1        | 126 | 4   | 1       | 1    | 0                  | 0       | 6   |
| 08:45  | 44  | 6       | 3    | 0                  | 0       | 53  | 73  | 9       | 7    | 0                   | 0        | 89  | 4   | 1       | 0    | 0                  | 0       | 5   |
| H/TOT  | 173 | 22      | 6    | 0                  | 2       | 203 | 351 | 47      | 17   | 4                   | 3        | 422 | 13  | 4       | 1    | 0                  | 0       | 18  |
| 09:00  | 24  | 3       | 2    | 0                  | 0       | 29  | 67  | 10      | 7    | 0                   | 0        | 84  | 5   | 1       | 1    | 0                  | 0       | 7   |
| 09:15  | 30  | 4       | 0    | 0                  | 1       | 35  | 65  | 17      | 9    | 3                   | 0        | 94  | 11  | 1       | 0    | 0                  | 0       | 12  |
| HH/TOT | 54  | 7       | 2    | 0                  | 1       | 64  | 132 | 27      | 16   | 3                   | 0        | 178 | 16  | 2       | 1    | 0                  | 0       | 19  |
| P/TOT  | 336 | 40      | 11   | 0                  | 6       | 393 | 814 | 126     | 44   | 10                  | 4        | 998 | 52  | 16      | 2    | 0                  | 0       | 70  |

SITE: 1 DATE: 11/03/2008 SURVEYS LTD

LOCATION: NUTBURN ROAD / BOTLEY ROAD / ROWNHAMS ROAD / BOTLEY ROAD DAY: TUESDAY

| TIME   |     |     |      | RM A<br>RN ROAD |     |     |     |     |      | ARM A<br>RN ROAD |     |     |
|--------|-----|-----|------|-----------------|-----|-----|-----|-----|------|------------------|-----|-----|
|        | CAR | LGV | OGV1 | OGV2            | PSV | TOT | CAR | LGV | OGV1 | OGV2             | PSV | TOT |
| 07:00  | 34  | 8   | 0    | 0               | 0   | 42  | 23  | 8   | 0    | 0                | 0   | 31  |
| 07:15  | 42  | 15  | 0    | 0               | 0   | 57  | 38  | 6   | 2    | 0                | 0   | 46  |
| 07:30  | 58  | 13  | 0    | 0               | 0   | 71  | 71  | 6   | 0    | 0                | 0   | 77  |
| 07:45  | 60  | 12  | 1    | 0               | 0   | 73  | 62  | 6   | 0    | 0                | 0   | 68  |
| H/TOT  | 194 | 48  | 1    | 0               | 0   | 243 | 194 | 26  | 2    | 0                | 0   | 222 |
| 08:00  | 50  | 9   | 1    | 0               | 0   | 60  | 95  | 6   | 1    | 0                | 0   | 102 |
| 08:15  | 42  | 3   | 0    | 0               | 0   | 45  | 119 | 2   | 1    | 0                | 1   | 123 |
| 08:30  | 60  | 4   | 1    | 0               | 0   | 65  | 121 | 3   | 1    | 0                | 0   | 125 |
| 08:45  | 44  | 3   | 0    | 0               | 0   | 47  | 102 | 1   | 1    | 0                | 0   | 104 |
| H/TOT  | 196 | 19  | 2    | 0               | 0   | 217 | 437 | 12  | 4    | 0                | 1   | 454 |
| 09:00  | 43  | 3   | 1    | 0               | 0   | 47  | 66  | 6   | 0    | 0                | 0   | 72  |
| 09:15  | 56  | 6   | 2    | 0               | 1   | 65  | 30  | 3   | 0    | 0                | 1   | 34  |
| HH/TOT | 99  | 9   | 3    | 0               | 1   | 112 | 96  | 9   | 0    | 0                | 1   | 106 |
| P/TOT  | 489 | 76  | 6    | 0               | 1   | 572 | 727 | 47  | 6    | 0                | 2   | 782 |

TO ARM A IS TOTAL OF MOVEMENTS 4, 8, 12 FROM ARM A IS TOTAL OF MOVEMENTS 1, 2, 3

SITE: 1 DATE: 11/03/2008



DAY: TUESDAY

LOCATION: NUTBURN ROAD / BOTLEY ROAD / ROWNHAMS ROAD / BOTLEY ROAD

| TIME   |      |     |      | RM B<br>Y ROAD |     |      |      |     |      | ARM B<br>Y ROAD |     |      |
|--------|------|-----|------|----------------|-----|------|------|-----|------|-----------------|-----|------|
|        | CAR  | LGV | OGV1 | OGV2           | PSV | TOT  | CAR  | LGV | OGV1 | OGV2            | PSV | TOT  |
| 07:00  | 67   | 12  | 1    | 2              | 0   | 82   | 87   | 11  | 1    | 1               | 0   | 100  |
| 07:15  | 97   | 18  | 5    | 0              | 1   | 121  | 128  | 15  | 3    | 1               | 0   | 147  |
| 07:30  | 137  | 17  | 3    | 1              | 0   | 158  | 169  | 24  | 0    | 1               | 0   | 194  |
| 07:45  | 108  | 19  | 4    | 0              | 0   | 131  | 151  | 11  | 0    | 2               | 4   | 168  |
| H/TOT  | 409  | 66  | 13   | 3              | 1   | 492  | 535  | 61  | 4    | 5               | 4   | 609  |
| 08:00  | 119  | 15  | 5    | 1              | 1   | 141  | 139  | 24  | 3    | 4               | 4   | 174  |
| 08:15  | 125  | 14  | 1    | 1              | 1   | 142  | 139  | 7   | 3    | 1               | 0   | 150  |
| 08:30  | 155  | 12  | 5    | 2              | 1   | 175  | 173  | 14  | 0    | 1               | 0   | 188  |
| 08:45  | 109  | 9   | 7    | 0              | 0   | 125  | 124  | 11  | 4    | 4               | 4   | 147  |
| H/TOT  | 508  | 50  | 18   | 4              | 3   | 583  | 575  | 56  | 10   | 10              | 8   | 659  |
| 09:00  | 97   | 13  | 9    | 0              | 0   | 119  | 123  | 18  | 0    | 4               | 2   | 147  |
| 09:15  | 93   | 18  | 11   | 3              | 0   | 125  | 127  | 15  | 7    | 7               | 2   | 158  |
| HH/TOT | 190  | 31  | 20   | 3              | 0   | 244  | 250  | 33  | 7    | 11              | 4   | 305  |
| P/TOT  | 1107 | 147 | 51   | 10             | 4   | 1319 | 1360 | 150 | 21   | 26              | 16  | 1573 |

TO ARM B IS TOTAL OF MOVEMENTS 3, 7, 11 FROM ARM B IS TOTAL OF MOVEMENTS 4, 5, 6

SITE: 1 DATE: 11/03/2008



LOCATION: NUTBURN ROAD / BOTLEY ROAD / ROWNHAMS ROAD / BOTLEY ROAD DAY: TUESDAY

| TIME   |     |     |      | RM C<br>MS ROAD |     |     |      |     |      | ARM C<br>MS ROAD |     |      |
|--------|-----|-----|------|-----------------|-----|-----|------|-----|------|------------------|-----|------|
|        | CAR | LGV | OGV1 | OGV2            | PSV | TOT | CAR  | LGV | OGV1 | OGV2             | PSV | TOT  |
| 07:00  | 30  | 5   | 0    | 0               | 0   | 35  | 78   | 14  | 1    | 0                | 0   | 93   |
| 07:15  | 45  | 9   | 3    | 0               | 1   | 58  | 111  | 13  | 0    | 0                | 1   | 125  |
| 07:30  | 75  | 2   | 2    | 0               | 1   | 80  | 165  | 21  | 3    | 0                | 0   | 189  |
| 07:45  | 62  | 6   | 1    | 0               | 1   | 70  | 119  | 16  | 2    | 0                | 2   | 139  |
| H/TOT  | 212 | 22  | 6    | 0               | 3   | 243 | 473  | 64  | 6    | 0                | 3   | 546  |
| 08:00  | 99  | 8   | 1    | 0               | 0   | 108 | 153  | 13  | 3    | 0                | 0   | 169  |
| 08:15  | 95  | 7   | 4    | 0               | 0   | 106 | 117  | 8   | 0    | 0                | 0   | 125  |
| 08:30  | 104 | 6   | 1    | 0               | 2   | 113 | 138  | 4   | 0    | 0                | 0   | 142  |
| 08:45  | 102 | 7   | 5    | 0               | 0   | 114 | 85   | 4   | 0    | 0                | 1   | 90   |
| H/TOT  | 400 | 28  | 11   | 0               | 2   | 441 | 493  | 29  | 3    | 0                | 1   | 526  |
| 09:00  | 58  | 5   | 2    | 0               | 0   | 65  | 111  | 4   | 3    | 0                | 0   | 118  |
| 09:15  | 48  | 7   | 2    | 0               | 2   | 59  | 93   | 5   | 4    | 0                | 1   | 103  |
| HH/TOT | 106 | 12  | 4    | 0               | 2   | 124 | 204  | 9   | 7    | 0                | 1   | 221  |
| P/TOT  | 718 | 62  | 21   | 0               | 7   | 808 | 1170 | 102 | 16   | 0                | 5   | 1293 |

TO ARM C IS TOTAL OF MOVEMENTS 2, 6, 10 FROM ARM C IS TOTAL OF MOVEMENTS 7, 8, 9

SITE: 1 DATE: 11/03/2008



LOCATION: NUTBURN ROAD / BOTLEY ROAD / ROWNHAMS ROAD / BOTLEY ROAD DAY: TUESDAY

| TIME   |      |     | TO A<br>BOTLE | RM D<br>Y ROAD |     |      |      |     |      | ARM D<br>Y ROAD |     |      |
|--------|------|-----|---------------|----------------|-----|------|------|-----|------|-----------------|-----|------|
|        | CAR  | LGV | OGV1          | OGV2           | PSV | TOT  | CAR  | LGV | OGV1 | OGV2            | PSV | TOT  |
| 07:00  | 134  | 18  | 2             | 1              | 0   | 155  | 77   | 10  | 1    | 2               | 0   | 90   |
| 07:15  | 202  | 18  | 1             | 1              | 1   | 223  | 109  | 26  | 4    | 0               | 2   | 141  |
| 07:30  | 291  | 32  | 3             | 1              | 0   | 327  | 156  | 13  | 5    | 1               | 1   | 176  |
| 07:45  | 223  | 20  | 0             | 2              | 6   | 251  | 121  | 24  | 4    | 0               | 1   | 150  |
| H/TOT  | 850  | 88  | 6             | 5              | 7   | 956  | 463  | 73  | 14   | 3               | 4   | 557  |
| 08:00  | 255  | 31  | 5             | 4              | 4   | 299  | 136  | 20  | 5    | 1               | 1   | 163  |
| 08:15  | 238  | 13  | 2             | 1              | 1   | 255  | 125  | 20  | 3    | 1               | 1   | 150  |
| 08:30  | 268  | 16  | 0             | 1              | 0   | 285  | 155  | 17  | 6    | 2               | 3   | 183  |
| 08:45  | 177  | 13  | 3             | 4              | 5   | 202  | 121  | 16  | 10   | 0               | 0   | 147  |
| H/TOT  | 938  | 73  | 10            | 10             | 10  | 1041 | 537  | 73  | 24   | 4               | 5   | 643  |
| 09:00  | 198  | 21  | 1             | 4              | 2   | 226  | 96   | 14  | 10   | 0               | 0   | 120  |
| 09:15  | 159  | 14  | 5             | 7              | 2   | 187  | 106  | 22  | 9    | 3               | 1   | 141  |
| HH/TOT | 357  | 35  | 6             | 11             | 4   | 413  | 202  | 36  | 19   | 3               | 1   | 261  |
| P/TOT  | 2145 | 196 | 22            | 26             | 21  | 2410 | 1202 | 182 | 57   | 10              | 10  | 1461 |

TO ARM D IS TOTAL OF MOVEMENTS 1, 5, 9 FROM ARM C IS TOTAL OF MOVEMENTS 10, 11, 12

## **QUEUE LENGTHS**

SITE: 1 DATE: 11/03/2008

SURVEYS LTD

| TIME  | ARM A - NUT | BURN ROAD | ARM B - BO | TLEY ROAD | ARM C -<br>ROWNHAMS<br>ROAD | ARM D - BO | TLEY ROAD |
|-------|-------------|-----------|------------|-----------|-----------------------------|------------|-----------|
|       | LANE 1      | LANE 2    | LANE 1     | LANE 2    | LANE 1                      | LANE 1     | LANE 2    |
| 07:00 | 3           | 0         | 2          | 1         | 5                           | 2          | 2         |
| 07:05 | 2           | 0         | 8          | 1         | 5                           | 7          | 2         |
| 07:10 | 2           | 0         | 4          | 1         | 10                          | 4          | 2         |
| 07:15 | 1           | 0         | 8          | 4         | 10                          | 12         | 1         |
| 07:20 | 5           | 0         | 14         | 3         | 11                          | 16         | 4         |
| 07:25 | 3           | 0         | 18         | 3         | 12                          | 18         | 3         |
| 07:30 | 4           | 2         | 9          | 2         | 24                          | 6          | 1         |
| 07:35 | 7           | 2         | 25         | 3         | 25                          | 14         | 3         |
| 07:40 | 6           | 2         | 25         | 3         | 23                          | 24         | 3         |
| 07:45 | 9           | 2         | 19         | 3         | 18                          | 15         | 2         |
| 07:50 | 8           | 2         | 16         | 1         | 28                          | 10         | 2         |
| 07:55 | 10          | 2         | 24         | 2         | 31                          | 18         | 3         |
| 08:00 | 10          | 2         | 29         | 4         | 24                          | 19         | 3         |
| 08:05 | 12          | 1         | 40         | 2         | 25                          | 16         | 2         |
| 08:10 | 15          | 3         | 38         | 2         | 28                          | 19         | 3         |
| 08:15 | 16          | 3         | 44         | 4         | 30                          | 22         | 3         |
| 08:20 | 12          | 2         | 36         | 1         | 32                          | 18         | 1         |
| 08:25 | 9           | 1         | 25         | 2         | 40                          | 16         | 2         |
| 08:30 | 8           | 2         | 31         | 1         | 38                          | 16         | 2         |
| 08:35 | 8           | 0         | 26         | 3         | 30                          | 19         | 2         |
| 08:40 | 16          | 2         | 24         | 1         | 15                          | 15         | 1         |
| 08:45 | 9           | 1         | 21         | 2         | 14                          | 16         | 1         |
| 08:50 | 4           | 2         | 30         | 1         | 13                          | 15         | 2         |
| 08:55 | 6           | 2         | 30         | 2         | 20                          | 10         | 1         |
| 09:00 | 9           | 2         | 28         | 2         | 18                          | 8          | 1         |
| 09:05 | 4           | 2         | 27         | 2         | 19                          | 7          | 2         |
| 09:10 | 5           | 0         | 26         | 2         | 14                          | 5          | 1         |
| 09:15 | 4           | 0         | 11         | 1         | 17                          | 8          | 2         |
| 09:20 | 3           | 1         | 13         | 3         | 12                          | 8          | 4         |
| 09:25 | 2           | 0         | 12         | 2         | 10                          | 14         | 3         |

## RAMBOLL

# TVBC DEVELOPMENT IMPACT NORTH BADDESLEY CROSSROADS - 2012 UPDATE

## **APPENDIX B**

TRIP MATRICES AND TURNING MOVEMENT CALCULATIONS

Table B1 2001 Census - Distribution of Trips

|                                      |        |     |     |          | West  | East  | Totton & | North |           |       |       |
|--------------------------------------|--------|-----|-----|----------|-------|-------|----------|-------|-----------|-------|-------|
|                                      | Romsey | NBW | NBE | Nursling | Soton | Soton | W'side   | Soton | Eastleigh | Other | Total |
| Romsey                               | 966    | 12  | 24  | 52       | 598   | 419   | 225      | 36    | 463       | 2358  | 4948  |
| N Baddesley E (development location) | 85     | 3   | 99  | 30       | 214   | 136   | 42       | 12    | 139       | 462   | 1177  |
| Nursling                             | 9      | 3   | 9   | 49       | 170   | 96    | 52       | 6     | 59        | 180   | 609   |

This table shows the number of journey to work trips between the origins and destinations shown, extracted from the census

The actual number of trips contained within a settlement for all trip purposes is likely to be higher than that shown for journey to work trips only. The RMAS phase II study predicted that about 37% of all trips would be internal to the town. Hence the number of external trips is likely to be an overestimate or a 'worst case'. To derive all purpose proportions would require more detailed 'gravity' modelling.

The figures shown in the white background boxes represent those trips considered likely to pass through North Baddesley Crossroads

It is considered unlikely that Nursling trips will travel through Baddesley.

The census area for North Baddesley east is taken as the 'model' zone location for the proposed development in North Baddesley

Abbreviations:

N Baddesley E and N B E – North Baddesley east (lower layer super output area from 2001 census data)

N B W - North Baddesley west; Sootn - Southampton; W'side - the Waterside settlements

Other – areas further afield outside the local/Southampton/Waterside areas

West Southampton and East Southampton are west and east of The Avenue respectively; North Southampton is Bassett, Chilworth and Swaythling

Table B2 2001 Census - Proportional Distribution of Trips

|               | Romsey | NBW  | NBE  | Nursling | West<br>Soton | East<br>Soton | Totton&<br>W'side | North<br>Soton | Eastleigh | Other |
|---------------|--------|------|------|----------|---------------|---------------|-------------------|----------------|-----------|-------|
| Romsey        | 0.20   | 0.00 | 0.00 | 0.01     | 0.12          | 0.08          | 0.05              | 0.01           | 0.09      | 0.44  |
| N Baddesley E | 0.07   | 0.00 | 0.08 | 0.03     | 0.18          | 0.12          | 0.04              | 0.01           | 0.12      | 0.35  |
| Nursling      | 0.01   | 0.00 | 0.01 | 0.08     | 0.28          | 0.16          | 0.09              | 0.01           | 0.10      | 0.26  |

Notes: This table shows the proportional split of census derived trips between the origins and destinations shown, to 2 decimal places. See table 1 for abbreviations

Table B3 - AM Peak Hour (0800-0900) Trips Generated by the proposed developments

|                 | Total |     |  |  |
|-----------------|-------|-----|--|--|
| Housing         | OUT   | IN  |  |  |
| Romsey          | 1070  | 345 |  |  |
| North Baddesley | 140   | 45  |  |  |
| Nursling        | 163   | 53  |  |  |

Notes: This table shows the predicted total trip generation (internal and external) from each of the proposed developments OUT means trips leaving the development: IN means trips arriving at the development

#### **Table B4 Routing Through the Crossroads**

|                                | Romsey                | NBW | NBE        | Nursling | W<br>Soton | E<br>Soton | Totton & W | N<br>Soton | Eastleigh | Other     |
|--------------------------------|-----------------------|-----|------------|----------|------------|------------|------------|------------|-----------|-----------|
| Romsey                         |                       |     |            |          |            | #[WE]      |            | WE         | WE        |           |
| N Baddesley W                  |                       |     |            |          |            |            |            |            |           |           |
| N Baddesley E                  |                       |     |            |          |            | SE         |            | SE         | SE        | **[SE,SN] |
| Nursling                       |                       |     |            |          |            |            |            |            |           |           |
| West Southampton               |                       |     |            |          |            |            |            |            |           |           |
| East Southampton               | #[EW]                 |     | ES         |          |            |            |            |            |           |           |
| Totton and Waterside           |                       |     |            |          |            |            |            |            |           |           |
| North Southampton              | EW                    |     | ES         |          |            |            |            |            |           |           |
| Eastleigh Fair Oak Bishopstoke | EW                    |     | ES         |          |            |            |            |            |           |           |
| Other                          |                       |     | **[ES, NS] |          |            |            |            |            |           |           |
|                                | [] partial assignment |     |            |          |            |            |            |            |           |           |

Notes: This table shows the possible routeing of trips through the crossroads

The figures shown in the white background boxes represent those trips considered likely to pass through North Baddesley Crossroads.

North Baddesley east as the model zone for the development in North Baddesley is assumed to be west of the settlement. Hence trips from for example Romsey West Southampton and Nursling will not pass through the crossroads

'WE' means west to east; SE, south to east; SN south to north; EW, ES and NS are the opposite movements

W stands for Botley Rd west; E for Botley Rd east; N for Nutburn Rd; S for Rownhams Rd

For Romsey - Southampton#[WE] and #[EW] for Romsey - Southampton, some traffic may travel through North Baddesley, but the majority are likely to use the M27. Hence for this assessment 40% are assumed to pass through North Baddesley. This may be an overestimate.

For 'other trips', to longer distance destinations traffic will tend to use major routes such as those through Romsey or reached via the M27 junction 3. Hence a minority of these trips will travel through the cross roads. For the purposes of this study, 25% of these trips are assumed to pass through the cross roads, 15% to/from Botley Road east, 10% to/from Nutburn Road.

Table B5 Development Trips through the cross roads - OUTBOUND

|                                  | Romsey        | NBW      | NBE        | Nurs      | W<br>Soton | E<br>Soton                            | Totton&W | N<br>Soton | Eastleigh | Other | Other* | E<br>Soton<br># | total |
|----------------------------------|---------------|----------|------------|-----------|------------|---------------------------------------|----------|------------|-----------|-------|--------|-----------------|-------|
| Romsey                           |               |          |            |           |            | 91                                    |          | 8          | 100       |       |        | 36              | 1070  |
| N Baddesley W                    |               |          |            |           |            |                                       |          |            |           |       |        |                 |       |
| N Baddesley E                    |               |          |            |           |            | 16                                    |          | 1          | 17        | 50    | 13     |                 | 140   |
| Nursling                         |               |          |            |           |            |                                       |          |            |           |       |        |                 |       |
| West Southampton                 |               |          |            |           |            |                                       |          |            |           |       |        |                 |       |
| East Southampton                 |               |          |            |           |            |                                       |          |            |           |       |        |                 |       |
| Totton and Waterside             |               |          |            |           |            |                                       |          |            |           |       |        |                 |       |
| North Southampton                |               |          |            |           |            |                                       |          |            |           |       |        |                 |       |
| Eastleigh Fair Oak Bishopstoke   |               |          |            |           |            |                                       |          |            |           |       |        |                 |       |
| Other                            |               |          |            |           |            |                                       |          |            |           |       |        |                 |       |
| * assumes 25% passes through jui | nction, 15% S | E, 10% S | N (13 trip | s SE, 8 t | rips SN)   | # assumes 40% passes through junction |          |            |           |       |        |                 |       |

Notes: This table applies the proportions in table B2 to the number of outbound trips in table B3 to derive the estimated outbound (one way) trips from the developments likely to pass through the crossroads.

The East Soton and Other trips likely to pass through the crossroads have been estimated as shown in table B4 and accompanying notes

Table B6 Morning Peak Hour Junction Trip Matrix for 'OUT' Trips by Turning Moves

|                                | Romsey | NBW | NBE | Nurs | W<br>Soton | E<br>Soton | Totton<br>&W | N Soton | Eastleigh | Other |   |    |       |
|--------------------------------|--------|-----|-----|------|------------|------------|--------------|---------|-----------|-------|---|----|-------|
| Romsey                         |        |     |     |      |            | 36         |              | 8       | 100       |       |   |    |       |
| N Baddesley W                  |        |     |     |      |            |            |              |         |           |       |   |    | Total |
| N Baddesley E                  |        |     |     |      |            | 16         |              | 1       | 17        | 8     | 5 | WE | 144   |
| Nursling                       |        |     |     |      |            |            |              |         |           |       |   | SE | 42    |
| West Southampton               |        |     |     |      |            |            |              |         |           |       |   | SN | 5     |
| East Southampton               |        |     |     |      |            |            |              |         |           |       |   |    |       |
| Totton and Waterside           |        |     |     |      |            |            |              |         |           |       |   |    |       |
| North Southampton              |        |     |     |      |            |            |              |         |           |       |   |    |       |
| Eastleigh Fair Oak Bishopstoke |        |     |     |      |            |            |              |         |           |       |   |    |       |
| Other                          |        |     |     |      |            |            |              |         |           |       |   |    |       |
|                                | •      | •   | •   | •    |            |            |              |         |           |       |   |    |       |

Notes: This table shows the total outbound turning moves between arms for all developments, e.g. WE is west to east, derived from tables B4 and B5

Table B7 Development Trips through the cross roads - INBOUND

|                                       | Romsey | NBW | NBE | Nurs | W<br>Soton | E<br>Soton | Totton&W    | N<br>Soton | Eastleigh     | Other  | Other*   | E<br>Soton | total |
|---------------------------------------|--------|-----|-----|------|------------|------------|-------------|------------|---------------|--------|----------|------------|-------|
| Romsey                                |        |     |     |      |            | 29         |             | 3          | 32            |        |          | 12         | 345   |
| N Baddesley W                         |        |     |     |      |            |            |             |            |               |        |          |            |       |
| N Baddesley E                         |        |     |     |      |            | 5          |             | 0          | 5             | 16     | 4        |            | 45    |
| Nursling                              |        |     |     |      |            |            |             |            |               |        |          |            |       |
| West Southampton                      |        |     |     |      |            |            |             |            |               |        |          |            |       |
| East Southampton                      |        |     |     |      |            |            |             |            |               |        |          |            |       |
| Totton and Waterside                  |        |     |     |      |            |            |             |            |               |        |          |            |       |
| North Southampton                     |        |     |     |      |            |            |             |            |               |        |          |            |       |
| Eastleigh Fair Oak Bishopstoke        |        |     |     |      |            |            |             |            |               |        |          |            |       |
| Other                                 |        |     |     |      |            |            |             |            |               |        |          |            |       |
|                                       |        |     |     |      |            | * assur    | nes 25% pas | ses throu  | ugh junction, | 15% SE | , 10% SN | (13/8)     |       |
| # assumes 40% passes through junction |        |     |     |      |            |            |             |            |               |        |          |            |       |

Notes: This table applies the proportions in table B2 to the number of inbound trips in table B3 to derive the estimated inbound (one way) trips to the developments likely to pass through the crossroads.

In this table the <u>origins are shown in the column headings</u> not the row headings

The East Soton and Other trips likely to pass through the crossroads have been estimated as shown in table B4 and accompanying notes

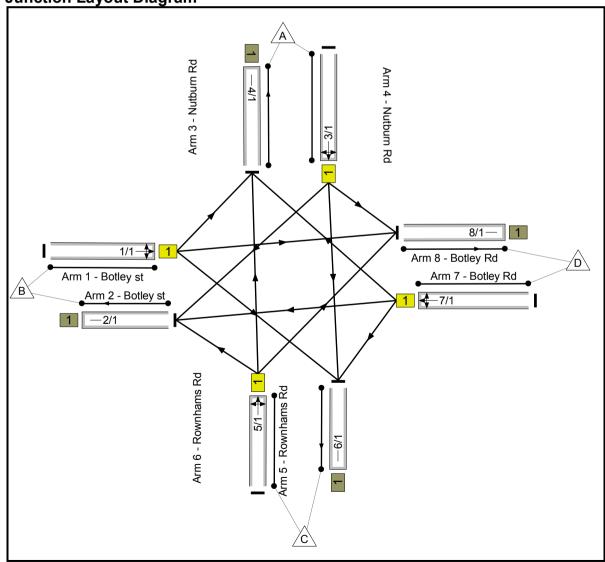
Table B8 Morning Peak Hour Junction Trip Matrix for 'IN' Trips by Turning Moves

|                      | Romsey | NBW | NBE | Nurs | W<br>Soton | E<br>Soton | Totton<br>& W | N Soton | Eastleigh | Otl | ner |    |       |
|----------------------|--------|-----|-----|------|------------|------------|---------------|---------|-----------|-----|-----|----|-------|
| Romsey               |        |     |     |      |            | 12         |               | 3       | 32        |     |     |    | Total |
| N Baddesley W        |        |     |     |      |            |            |               |         |           |     |     | NS | 2     |
| N Baddesley E        |        |     |     |      |            | 5          |               | 0       | 5         | 2   | 2   | EW | 47    |
| Nursling             |        |     |     |      |            |            |               |         |           |     |     | ES | 12    |
| West Southampton     |        |     |     |      |            |            |               |         |           |     |     |    |       |
| East Southampton     |        |     |     |      |            |            |               |         |           |     |     |    |       |
| Totton and Waterside |        |     |     |      |            |            |               |         |           |     |     |    |       |
| North Southampton    |        |     |     |      |            |            |               |         |           |     |     |    |       |
| Eastleigh Fair Oak   |        |     |     |      |            |            |               |         |           |     |     |    |       |
| Bishopstoke          |        |     |     |      |            |            |               |         |           |     |     |    |       |
| Other                |        |     |     |      |            |            |               |         |           |     |     |    |       |
|                      |        |     |     |      |            |            |               |         |           |     |     |    |       |

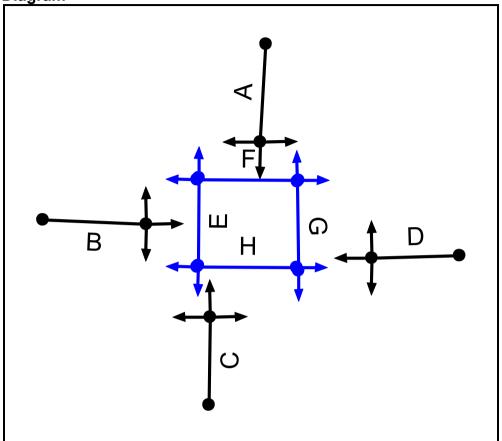
Notes: This table shows the total inbound turning moves between arms for all developments, e.g. EW is east to west, derived from table B4 and B7

# RAMBOLL

# TVBC DEVELOPMENT IMPACT NORTH BADDESLEY CROSSROADS - 2012 UPDATE


#### **APPENDIX C**

LINSIG OUTPUTS


**User and Project Details** 

| Project:    | North Baddesley Cross Roads      |
|-------------|----------------------------------|
| Title:      |                                  |
| Location:   |                                  |
| File name:  | NB Xrds_ all scenarios_2012.lsgx |
| Author:     | N.J.George                       |
| Company:    |                                  |
| Address:    |                                  |
| Controller: | Generic                          |
| SCN:        |                                  |
| Notes:      |                                  |

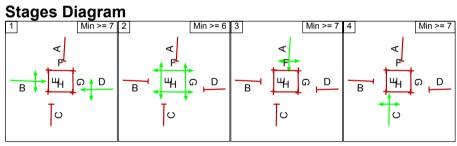
**Junction Layout Diagram** 



Phase Diagram



# **Phase Input Data**


| Phase Name | Phase type | Assoc Phase | Street Min | Cont Min |
|------------|------------|-------------|------------|----------|
| А          | Traffic    |             | 7          | 7        |
| В          | Traffic    |             | 7          | 7        |
| С          | Traffic    |             | 7          | 7        |
| D          | Traffic    |             | 7          | 7        |
| Е          | Pedestrian |             | 6          | 6        |
| F          | Pedestrian |             | 6          | 6        |
| G          | Pedestrian |             | 6          | 6        |
| Н          | Pedestrian |             | 6          | 6        |

**Phase Intergreens Matrix** 

|                   | . <u>g.</u> | Starting Phase |   |   |   |   |   |   |   |  |  |
|-------------------|-------------|----------------|---|---|---|---|---|---|---|--|--|
|                   |             | Α              | В | С | D | Е | F | G | Η |  |  |
|                   | Α           |                | 7 | 7 | 7 | 7 | 7 | 7 | 7 |  |  |
|                   | В           | 7              |   | 7 | - | 7 | 7 | 7 | 7 |  |  |
|                   | С           | 7              | 7 |   | 7 | 7 | 7 | 7 | 7 |  |  |
| Terminating Phase | D           | 7              | - | 7 |   | 7 | 7 | 7 | 7 |  |  |
|                   | Е           | 9              | 9 | 9 | 9 |   | ı | ı | - |  |  |
|                   | F           | 9              | 9 | 9 | 9 | - |   | - | - |  |  |
|                   | G           | 9              | 9 | 9 | 9 | - | - |   | - |  |  |
|                   | Н           | 9              | 9 | 9 | 9 | - | - | - |   |  |  |

**Phases in Stage** 

| Stage No. | Phases in Stage |
|-----------|-----------------|
| 1         | B D             |
| 2         | EFGH            |
| 3         | А               |
| 4         | С               |



# **Phase Delays**

There are no phase delays defined in this stage stream

# **Prohibited Stage Changes**

|               |   | To Stage |   |   |   |  |  |  |  |  |
|---------------|---|----------|---|---|---|--|--|--|--|--|
|               |   | 1        | 2 | 3 | 4 |  |  |  |  |  |
| From<br>Stage | 1 |          | 7 | 7 | 7 |  |  |  |  |  |
|               | 2 | 9        |   | 9 | 9 |  |  |  |  |  |
| 3             | 3 | 7        | 7 |   | 7 |  |  |  |  |  |
|               | 4 | 7        | 7 | 7 |   |  |  |  |  |  |

Link Input Data

| Arm/<br>Link | Link Name                       | Link<br>Type | Num<br>Lanes | Phases | Start<br>Disp. | End<br>Disp. |
|--------------|---------------------------------|--------------|--------------|--------|----------------|--------------|
| 1/1          | Botley st Left Right Ahead      | U            | 1            | В      | 2              | 3            |
| 2/1          | Botley st                       | U            | 1            |        | 2              | 3            |
| 3/1          | Nutburn Rd Right Ahead Left     | U            | 1            | Α      | 2              | 3            |
| 4/1          | Nutburn Rd                      | U            | 1            |        | 2              | 3            |
| 5/1          | Rownhams Rd Left Ahead<br>Right | U            | 1            | С      | 2              | 3            |
| 6/1          | Rownhams Rd                     | U            | 1            |        | 2              | 3            |
| 7/1          | Botley Rd Ahead Right Left      | U            | 1            | D      | 2              | 3            |
| 8/1          | Botley Rd                       | U            | 1            |        | 2              | 3            |

**Give-Way Link Input DataLane Input Data** 

| Arm/<br>Lane                   | Link Num                                | Physical<br>Length<br>(PCU) | Expected<br>Usage<br>(PCU) | Sat<br>Flow<br>Type | User<br>Saturation<br>Flow<br>(PCU/Hr) | Lane<br>Width<br>(m) | Gradient | Nearside<br>Lane | Allowed<br>Turns                | Turning<br>Radius<br>(m) |
|--------------------------------|-----------------------------------------|-----------------------------|----------------------------|---------------------|----------------------------------------|----------------------|----------|------------------|---------------------------------|--------------------------|
|                                |                                         |                             |                            |                     |                                        |                      |          |                  | Arm 4 Left<br>(Nutburn Rd)      | 15.00                    |
| 1/1<br>(Botley st Lane 1)      | Link 1 (Botley st Left Right Ahead)     | Inf                         | Inf                        | User                | 2300                                   | 4.00                 | 0.00     | N                | Arm 6 Right<br>(Rownhams<br>Rd) | 25.00                    |
|                                |                                         |                             |                            |                     |                                        |                      |          |                  | Arm 8 Ahead<br>(Botley Rd)      | Inf                      |
| 2/1<br>(Botley st Lane 1)      | Link 1 (Botley st)                      | Inf                         | Inf                        | Inf (Exit)          | 1800                                   | 5.00                 | 0.00     | N                |                                 |                          |
|                                |                                         |                             |                            |                     |                                        |                      |          |                  | Arm 2 Right<br>(Botley st)      | Inf                      |
| 3/1<br>(Nutburn Rd Lane 1)     | Link 1 (Nutburn Rd Right Ahead<br>Left) | Inf                         | Inf                        | User                | 3300                                   | 2.75                 | 0.00     | Y                | Arm 6 Ahead<br>(Rownhams<br>Rd) | Inf                      |
|                                |                                         |                             |                            |                     |                                        |                      |          |                  | Arm 8 Left<br>(Botley Rd)       | 15.00                    |
| 4/1<br>(Nutburn Rd Lane 1)     | Link 1 (Nutburn Rd)                     | Inf                         | Inf                        | Inf (Exit)          | 1800                                   | 4.00                 | 0.00     | N                |                                 |                          |
|                                |                                         |                             |                            |                     |                                        |                      |          |                  | Arm 2 Left<br>(Botley st)       | 14.00                    |
| 5/1<br>(Rownhams Rd Lane<br>1) | Link 1 (Rownhams Rd Left Ahead Right)   | Inf                         | Inf                        | User                | 2600                                   | 5.00                 | 0.00     | Y                | Arm 4 Ahead<br>(Nutburn Rd)     | Inf                      |
| ,                              |                                         |                             |                            |                     |                                        |                      |          |                  | Arm 8 Right<br>(Botley Rd)      | 25.00                    |
| 6/1<br>(Rownhams Rd Lane<br>1) | Link 1 (Rownhams Rd)                    | Inf                         | Inf                        | Inf (Exit)          | 1800                                   | 3.66                 | 0.00     | N                |                                 |                          |

|                                |                                        |     |     |            |      |      |      |   | Arm 2 Ahead<br>(Botley st)     | Inf   |
|--------------------------------|----------------------------------------|-----|-----|------------|------|------|------|---|--------------------------------|-------|
| 7/1 Link<br>(Botley Rd Lane 1) | Link 1 (Botley Rd Ahead Right<br>Left) | Inf | Inf | User       | 2800 | 4.00 | 0.00 | N | Arm 4 Right (Nutburn Rd)       | 25.00 |
|                                | ,                                      |     |     |            |      |      |      |   | Arm 6 Left<br>(Rownhams<br>Rd) | 15.00 |
| 8/1<br>(Botley Rd Lane 1)      | Link 1 (Botley Rd)                     | Inf | Inf | Inf (Exit) | 1800 | 3.25 | 0.00 | Y |                                |       |

**Traffic Flow Groups** 

| Flow Group                      | Start Time | End Time | Duration | Formula     |
|---------------------------------|------------|----------|----------|-------------|
| 1: '2008 AM peak'               | 08:00      | 09:00    | 01:00    |             |
| 2: '2012 AM Peak + all dev'     | 08:00      | 09:00    | 01:00    |             |
| 3: '2012 AM Peak + NB Dev only' | 08:00      | 09:00    | 01:00    |             |
| 4: '2031 Base'                  | 08:00      | 09:00    | 01:00    | F1*1.23145  |
| 5: '2012 AM peak'               | 08:00      | 09:00    | 01:00    | F1*1.048063 |

Flow Group 1: '2008 AM peak'

Traffic Flow Matrix Desired Flow:

|        | Destination |     |     |     |      |      |  |  |  |  |  |
|--------|-------------|-----|-----|-----|------|------|--|--|--|--|--|
|        |             | Α   | В   | С   | D    | Tot. |  |  |  |  |  |
|        | Α           | 0   | 152 | 231 | 81   | 464  |  |  |  |  |  |
| Origin | В           | 68  | 0   | 13  | 624  | 705  |  |  |  |  |  |
| Origin | С           | 139 | 11  | 0   | 393  | 543  |  |  |  |  |  |
|        | D           | 21  | 459 | 219 | 0    | 699  |  |  |  |  |  |
|        | Tot.        | 228 | 622 | 463 | 1098 | 2411 |  |  |  |  |  |

# **Link Traffic Flows**

| Arm/Link | Flow<br>Group 1:<br>2008 AM<br>peak |
|----------|-------------------------------------|
| 1/1      | 705                                 |
| 2/1      | 622                                 |
| 3/1      | 464                                 |
| 4/1      | 228                                 |
| 5/1      | 543                                 |
| 6/1      | 463                                 |
| 7/1      | 699                                 |
| 8/1      | 1098                                |

# **Lane Saturation Flows**

|                             |                      | ſ                                                 |                  | f                | F                        | ſ                |                      |
|-----------------------------|----------------------|---------------------------------------------------|------------------|------------------|--------------------------|------------------|----------------------|
| Arm/<br>Lane                | Lane<br>Width<br>(m) | Gradient                                          | Nearside<br>Lane | Allowed<br>Turns | Turning<br>Radius<br>(m) | Turning<br>Prop. | Sat flow<br>(PCU/Hr) |
| 1/1<br>(Botley st Lane 1)   |                      | This lane uses a directly entered Saturation Flow |                  |                  |                          |                  |                      |
| 2/1<br>(Botley st Lane 1)   | 5.00                 | 0.00                                              | N                |                  |                          |                  | 2255                 |
| 3/1<br>(Nutburn Rd Lane 1)  |                      | This lane uses a directly entered Saturation Flow |                  |                  |                          |                  |                      |
| 4/1<br>(Nutburn Rd Lane 1)  | 4.00                 | 0.00                                              | N                |                  |                          |                  | 2155                 |
| 5/1<br>(Rownhams Rd Lane 1) |                      | This lane uses a directly entered Saturation Flow |                  |                  |                          |                  |                      |
| 6/1<br>(Rownhams Rd Lane 1) | 3.66                 | 0.00                                              | N                |                  |                          |                  | 2121                 |
| 7/1<br>(Botley Rd Lane 1)   |                      | This lane uses a directly entered Saturation Flow |                  |                  |                          |                  |                      |
| 8/1<br>(Botley Rd Lane 1)   |                      | Infinit                                           | e Saturation     | Flow (on Ex      | kit Link)                |                  | Inf                  |

Flow Group 2: '2012 AM Peak + all dev' Traffic Flow Matrix

|      | esi  | !  | -1 1 | _    |     |   | _ |
|------|------|----|------|------|-----|---|---|
| 1 1/ | OC.  | ro | n 1  | - 14 | AV. | · | • |
| _    | C 31 |    | _    |      |     | v | _ |

|        | Destination |     |     |     |      |      |  |  |  |
|--------|-------------|-----|-----|-----|------|------|--|--|--|
|        |             | Α   | В   | С   | D    | Tot. |  |  |  |
|        | Α           | 0   | 159 | 244 | 85   | 488  |  |  |  |
| В      | В           | 71  | 0   | 14  | 798  | 883  |  |  |  |
| Origin | С           | 151 | 12  | 0   | 454  | 617  |  |  |  |
| D      | D           | 22  | 528 | 242 | 0    | 792  |  |  |  |
|        | Tot.        | 244 | 699 | 500 | 1337 | 2780 |  |  |  |

# **Link Traffic Flows**

| Arm/Link | Flow<br>Group 2:<br>2012 AM<br>Peak + all<br>dev |
|----------|--------------------------------------------------|
| 1/1      | 883                                              |
| 2/1      | 699                                              |
| 3/1      | 488                                              |
| 4/1      | 244                                              |
| 5/1      | 617                                              |
| 6/1      | 500                                              |
| 7/1      | 792                                              |
| 8/1      | 1337                                             |

### **Lane Saturation Flows**

| Lanc Gataration 1           |                      |                                                   |                  |                  |                          | -                |                      |
|-----------------------------|----------------------|---------------------------------------------------|------------------|------------------|--------------------------|------------------|----------------------|
| Arm/<br>Lane                | Lane<br>Width<br>(m) | Gradient                                          | Nearside<br>Lane | Allowed<br>Turns | Turning<br>Radius<br>(m) | Turning<br>Prop. | Sat flow<br>(PCU/Hr) |
| 1/1<br>(Botley st Lane 1)   |                      | This lane uses a directly entered Saturation Flow |                  |                  |                          |                  |                      |
| 2/1<br>(Botley st Lane 1)   | 5.00                 | 0.00                                              | N                |                  |                          |                  | 2255                 |
| 3/1<br>(Nutburn Rd Lane 1)  |                      | This lane uses a directly entered Saturation Flow |                  |                  |                          |                  |                      |
| 4/1<br>(Nutburn Rd Lane 1)  | 4.00                 | 0.00                                              | N                |                  |                          |                  | 2155                 |
| 5/1<br>(Rownhams Rd Lane 1) |                      | This lane uses a directly entered Saturation Flow |                  |                  |                          |                  |                      |
| 6/1<br>(Rownhams Rd Lane 1) | 3.66                 | 0.00                                              | N                |                  |                          |                  | 2121                 |
| 7/1<br>(Botley Rd Lane 1)   |                      | This lane uses a directly entered Saturation Flow |                  |                  |                          |                  |                      |
| 8/1<br>(Botley Rd Lane 1)   |                      | Infinit                                           | e Saturation     | Flow (on Ex      | kit Link)                |                  | Inf                  |

#### Flow Group 3: '2012 AM Peak + NB Dev only' Traffic Flow Matrix Desired Flow :

|              |      | Destination |     |     |      |      |  |  |  |  |
|--------------|------|-------------|-----|-----|------|------|--|--|--|--|
|              |      | Α           | В   | С   | D    | Tot. |  |  |  |  |
| Origin B C D | 0    | 159         | 244 | 85  | 488  |      |  |  |  |  |
|              | В    | 71          | 0   | 14  | 654  | 739  |  |  |  |  |
|              | С    | 151         | 12  | 0   | 454  | 617  |  |  |  |  |
|              | D    | 22          | 481 | 242 | 0    | 745  |  |  |  |  |
|              | Tot. | 244         | 652 | 500 | 1193 | 2589 |  |  |  |  |

#### **Link Traffic Flows**

| Arm/Link | Flow<br>Group 3:<br>2012 AM<br>Peak + NB<br>Dev only |
|----------|------------------------------------------------------|
| 1/1      | 739                                                  |
| 2/1      | 652                                                  |
| 3/1      | 488                                                  |
| 4/1      | 244                                                  |
| 5/1      | 617                                                  |
| 6/1      | 500                                                  |
| 7/1      | 745                                                  |
| 8/1      | 1193                                                 |

# **Lane Saturation Flows**

| Arm/<br>Lane                | Lane<br>Width<br>(m) | Gradient                                          | Nearside<br>Lane                                  | Allowed<br>Turns | Turning<br>Radius<br>(m) | Turning<br>Prop. | Sat flow<br>(PCU/Hr) |  |
|-----------------------------|----------------------|---------------------------------------------------|---------------------------------------------------|------------------|--------------------------|------------------|----------------------|--|
| 1/1<br>(Botley st Lane 1)   |                      | This lane us                                      | This lane uses a directly entered Saturation Flow |                  |                          |                  |                      |  |
| 2/1<br>(Botley st Lane 1)   | 5.00                 | 0.00                                              | N                                                 |                  |                          |                  | 2255                 |  |
| 3/1<br>(Nutburn Rd Lane 1)  |                      | This lane uses a directly entered Saturation Flow |                                                   |                  |                          |                  |                      |  |
| 4/1<br>(Nutburn Rd Lane 1)  | 4.00                 | 0.00                                              | N                                                 |                  |                          |                  | 2155                 |  |
| 5/1<br>(Rownhams Rd Lane 1) |                      | This lane us                                      | ses a directly                                    | entered Sa       | ituration Flo            | )W               | 2600                 |  |
| 6/1<br>(Rownhams Rd Lane 1) | 3.66                 | 0.00                                              | N                                                 |                  |                          |                  | 2121                 |  |
| 7/1<br>(Botley Rd Lane 1)   |                      | This lane uses a directly entered Saturation Flow |                                                   |                  |                          |                  |                      |  |
| 8/1<br>(Botley Rd Lane 1)   |                      | Infinit                                           | e Saturation                                      | Flow (on Ex      | kit Link)                |                  | Inf                  |  |

Flow Group 4: '2031 Base' Traffic Flow Matrix

Desired Flow:

| 20004 1.1011 1 |             |     |     |     |      |      |  |  |  |  |
|----------------|-------------|-----|-----|-----|------|------|--|--|--|--|
|                | Destination |     |     |     |      |      |  |  |  |  |
|                |             | Α   | В   | С   | D    | Tot. |  |  |  |  |
|                | Α           | 0   | 187 | 284 | 100  | 571  |  |  |  |  |
| Origin         | В           | 84  | 0   | 16  | 768  | 868  |  |  |  |  |
| Origin         | С           | 171 | 14  | 0   | 484  | 669  |  |  |  |  |
| D              | D           | 26  | 565 | 270 | 0    | 861  |  |  |  |  |
|                | Tot.        | 281 | 766 | 570 | 1352 | 2969 |  |  |  |  |

# **Link Traffic Flows**

| Arm/Link | Flow<br>Group 4:<br>2031 Base |
|----------|-------------------------------|
| 1/1      | 868                           |
| 2/1      | 766                           |
| 3/1      | 571                           |
| 4/1      | 281                           |
| 5/1      | 669                           |
| 6/1      | 570                           |
| 7/1      | 861                           |
| 8/1      | 1352                          |

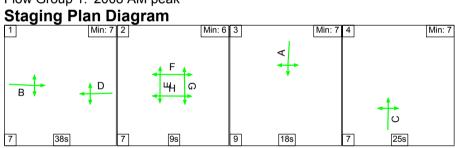
# **Lane Saturation Flows**

| Lane Gataration Flows       |                      |                                                   |                  |                  |                          |                  |                      |  |
|-----------------------------|----------------------|---------------------------------------------------|------------------|------------------|--------------------------|------------------|----------------------|--|
| Arm/<br>Lane                | Lane<br>Width<br>(m) | Gradient                                          | Nearside<br>Lane | Allowed<br>Turns | Turning<br>Radius<br>(m) | Turning<br>Prop. | Sat flow<br>(PCU/Hr) |  |
| 1/1<br>(Botley st Lane 1)   |                      | This lane uses a directly entered Saturation Flow |                  |                  |                          |                  |                      |  |
| 2/1<br>(Botley st Lane 1)   | 5.00                 | 0.00                                              | N                |                  |                          |                  | 2255                 |  |
| 3/1<br>(Nutburn Rd Lane 1)  |                      | This lane uses a directly entered Saturation Flow |                  |                  |                          |                  |                      |  |
| 4/1<br>(Nutburn Rd Lane 1)  | 4.00                 | 0.00                                              | N                |                  |                          |                  | 2155                 |  |
| 5/1<br>(Rownhams Rd Lane 1) |                      | This lane us                                      | ses a directly   | entered Sa       | turation Flo             | ow               | 2600                 |  |
| 6/1<br>(Rownhams Rd Lane 1) | 3.66                 | 0.00                                              | N                |                  |                          |                  | 2121                 |  |
| 7/1<br>(Botley Rd Lane 1)   |                      | This lane uses a directly entered Saturation Flow |                  |                  |                          |                  |                      |  |
| 8/1<br>(Botley Rd Lane 1)   |                      | Infinit                                           | e Saturation     | Flow (on Ex      | kit Link)                |                  | Inf                  |  |

Flow Group 5: '2012 AM peak' Traffic Flow Matrix

**Desired Flow:** 

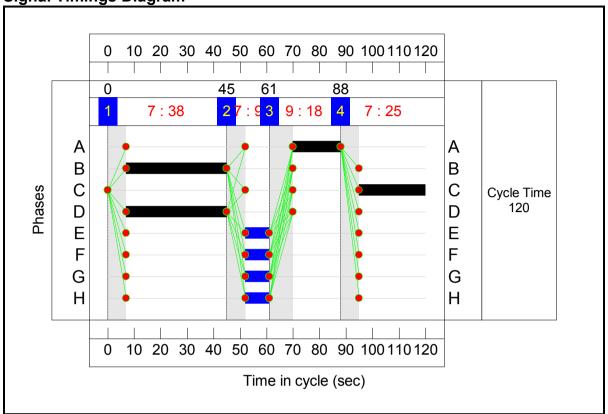
|        |      |     | Desti | nation |      |      |
|--------|------|-----|-------|--------|------|------|
|        |      | Α   | В     | С      | D    | Tot. |
|        | Α    | 0   | 159   | 242    | 85   | 486  |
| Origin | В    | 71  | 0     | 14     | 654  | 739  |
| Origin | С    | 146 | 12    | 0      | 412  | 569  |
|        | D    | 22  | 481   | 230    | 0    | 733  |
|        | Tot. | 239 | 652   | 485    | 1151 | 2527 |


#### **Link Traffic Flows**

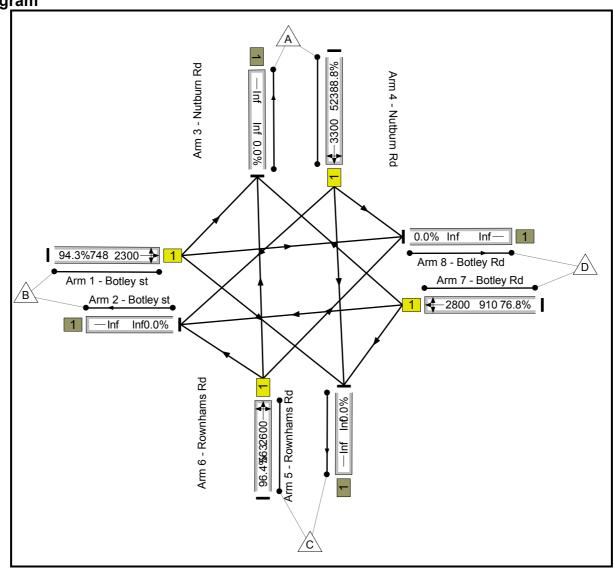
| Arm/Link | Flow<br>Group 5:<br>2012 AM<br>peak |
|----------|-------------------------------------|
| 1/1      | 739                                 |
| 2/1      | 652                                 |
| 3/1      | 486                                 |
| 4/1      | 239                                 |
| 5/1      | 569                                 |
| 6/1      | 485                                 |
| 7/1      | 733                                 |
| 8/1      | 1151                                |

### **Lane Saturation Flows**

| Arm/<br>Lane                | Lane<br>Width<br>(m) | Gradient     | Nearside<br>Lane | Allowed<br>Turns | Turning<br>Radius<br>(m) | Turning<br>Prop. | Sat flow<br>(PCU/Hr) |
|-----------------------------|----------------------|--------------|------------------|------------------|--------------------------|------------------|----------------------|
| 1/1<br>(Botley st Lane 1)   |                      | This lane us | ses a directly   | entered Sa       | ituration Flo            | )W               | 2300                 |
| 2/1<br>(Botley st Lane 1)   | 5.00                 | 0.00         | N                |                  |                          |                  | 2255                 |
| 3/1<br>(Nutburn Rd Lane 1)  |                      | This lane us | ses a directly   | entered Sa       | ituration Flo            | )W               | 3300                 |
| 4/1<br>(Nutburn Rd Lane 1)  | 4.00                 | 0.00         | N                |                  |                          |                  | 2155                 |
| 5/1<br>(Rownhams Rd Lane 1) |                      | This lane us | ses a directly   | entered Sa       | ituration Flo            | )W               | 2600                 |
| 6/1<br>(Rownhams Rd Lane 1) | 3.66                 | 0.00         | N                |                  |                          |                  | 2121                 |
| 7/1<br>(Botley Rd Lane 1)   |                      | This lane us | ses a directly   | entered Sa       | ituration Flo            | )W               | 2800                 |
| 8/1<br>(Botley Rd Lane 1)   |                      | Inf          |                  |                  |                          |                  |                      |


Scenario 1: '2008 AM Peak - Base' Staging Plan 1: 'AM Peak - Base' Flow Group 1: '2008 AM peak'




Stage Timings

| Stage        | 1  | 2  | 3  | 4  |
|--------------|----|----|----|----|
| Duration     | 38 | 9  | 18 | 25 |
| Change Point | 0  | 45 | 61 | 88 |





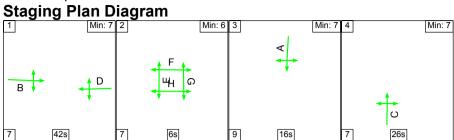
Junction Layout Diagram



### **Link Results**

|             | itosaits                           |              |                 |                            |            |                |               |                 |                       |                      |                             |                             |                   |                   |
|-------------|------------------------------------|--------------|-----------------|----------------------------|------------|----------------|---------------|-----------------|-----------------------|----------------------|-----------------------------|-----------------------------|-------------------|-------------------|
| Link<br>Num | Link Desc                          | Link<br>Type | Stage<br>Stream | Position In Filtered Route | Full Phase | Arrow<br>Phase | Num<br>Greens | Total Green (s) | Arrow<br>Green<br>(s) | Demand<br>Flow (pcu) | Max Sat<br>Flow<br>(pcu/Hr) | Ave Sat<br>Flow<br>(pcu/Hr) | Capacity<br>(pcu) | Deg<br>Sat<br>(%) |
| 1/1         | Botley st Left<br>Right Ahead      | U            | N/A             | N/A                        | В          |                | 1             | 38              | -                     | 705                  | 2300                        | 2300                        | 748               | 94.3              |
| 2/1         | Botley st                          | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 622                  | Inf                         | Inf                         | Inf               | 0.0               |
| 3/1         | Nutburn Rd<br>Right Ahead<br>Left  | U            | N/A             | N/A                        | А          |                | 1             | 18              | -                     | 464                  | 3300                        | 3300                        | 523               | 88.8              |
| 4/1         | Nutburn Rd                         | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 228                  | Inf                         | Inf                         | Inf               | 0.0               |
| 5/1         | Rownhams<br>Rd Left<br>Ahead Right | U            | N/A             | N/A                        | С          |                | 1             | 25              | -                     | 543                  | 2600                        | 2600                        | 563               | 96.4              |
| 6/1         | Rownhams<br>Rd                     | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 463                  | Inf                         | Inf                         | Inf               | 0.0               |
| 7/1         | Botley Rd<br>Ahead Right<br>Left   | U            | N/A             | N/A                        | D          |                | 1             | 38              | -                     | 699                  | 2800                        | 2800                        | 910               | 76.8              |
| 8/1         | Botley Rd                          | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 1098                 | Inf                         | Inf                         | Inf               | 0.0               |

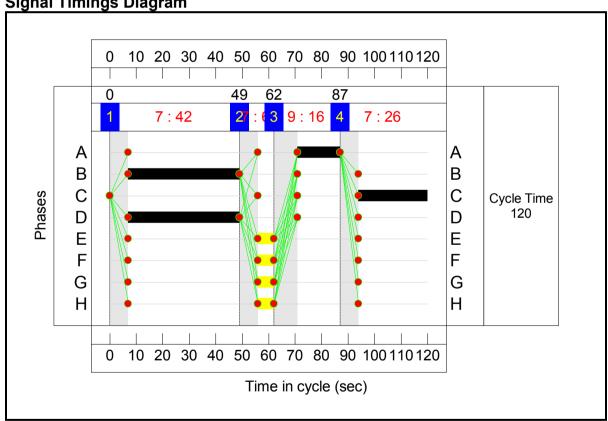
| Link<br>Num | Entering (pcu) | Leaving<br>(pcu) | Turners<br>In Gaps<br>(pcu) | Turners When<br>Unopposed<br>(pcu) | Turners In<br>Intergreen<br>(pcu) | Uniform<br>Delay<br>(pcuHr) | Rand +<br>Oversat<br>Delay<br>(pcuHr) | Storage<br>Area<br>Uniform<br>Delay<br>(pcuHr) | Total<br>Delay<br>(pcuHr) | Av. Delay<br>Per Veh<br>(s/pcu) | Max. Back<br>of Uniform<br>Queue<br>(pcu) | Rand +<br>Oversat<br>Queue<br>(pcu) | Mean Max<br>Queue<br>(pcu) |  |
|-------------|----------------|------------------|-----------------------------|------------------------------------|-----------------------------------|-----------------------------|---------------------------------------|------------------------------------------------|---------------------------|---------------------------------|-------------------------------------------|-------------------------------------|----------------------------|--|
| 1/1         | 705            | 705              | -                           | -                                  | -                                 | 7.7                         | 6.4                                   | -                                              | 14.1                      | 72.0                            | 22.7                                      | 6.4                                 | 29.1                       |  |
| 2/1         | 622            | 622              | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |
| 3/1         | 464            | 464              | -                           | -                                  | -                                 | 6.4                         | 3.5                                   | -                                              | 9.9                       | 76.9                            | 15.1                                      | 3.5                                 | 18.6                       |  |
| 4/1         | 228            | 228              | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |
| 5/1         | 543            | 543              | -                           | -                                  | -                                 | 7.0                         | 7.6                                   | -                                              | 14.6                      | 97.1                            | 17.8                                      | 7.6                                 | 25.4                       |  |
| 6/1         | 463            | 463              | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |
| 7/1         | 699            | 699              | -                           | -                                  | -                                 | 7.1                         | 1.6                                   | -                                              | 8.7                       | 44.8                            | 20.8                                      | 1.6                                 | 22.4                       |  |
| 8/1         | 1098           | 1098             | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |


PRC for Signalled Links (%): PRC Over All Links (%): -7.1 Total Delay for Signalled Links (pcuHr):-7.1 Total Delay Over All Links (pcuHr):

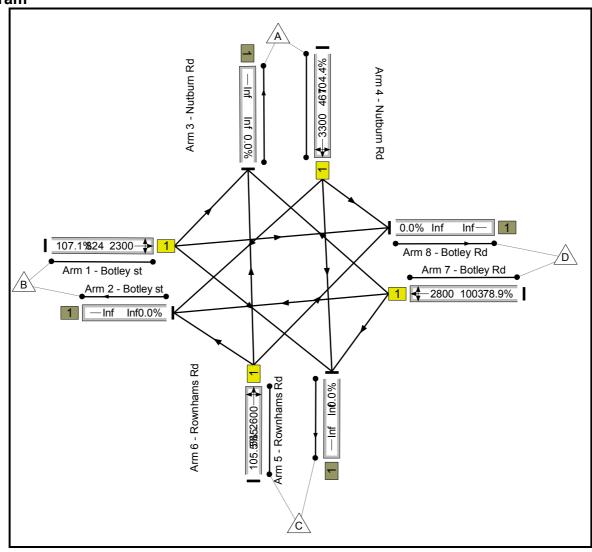
47.37 47.37

Cycle Time (s): 120

# Scenario 2: '2012 AM Peak + All Dev'


Staging Plan 1: 'AM Peak - Base' Flow Group 2: '2012 AM Peak + all dev'




**Stage Timings** 

| Stage        | 1  | 2  | 3  | 4  |
|--------------|----|----|----|----|
| Duration     | 42 | 6  | 16 | 26 |
| Change Point | 0  | 49 | 62 | 87 |





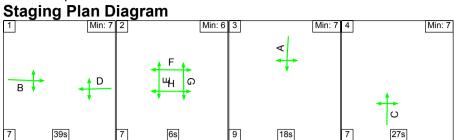
Junction Layout Diagram



### **Link Results**

| Link<br>Num | Link Desc                          | Link<br>Type | Stage<br>Stream | Position In Filtered Route | Full Phase | Arrow<br>Phase | Num<br>Greens | Total Green (s) | Arrow<br>Green<br>(s) | Demand<br>Flow (pcu) | Max Sat<br>Flow<br>(pcu/Hr) | Ave Sat<br>Flow<br>(pcu/Hr) | Capacity (pcu) | Deg<br>Sat<br>(%) |
|-------------|------------------------------------|--------------|-----------------|----------------------------|------------|----------------|---------------|-----------------|-----------------------|----------------------|-----------------------------|-----------------------------|----------------|-------------------|
| 1/1         | Botley st Left<br>Right Ahead      | U            | N/A             | N/A                        | В          |                | 1             | 42              | -                     | 883                  | 2300                        | 2300                        | 824            | 107.1             |
| 2/1         | Botley st                          | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 699                  | Inf                         | Inf                         | Inf            | 0.0               |
| 3/1         | Nutburn Rd<br>Right Ahead<br>Left  | U            | N/A             | N/A                        | А          |                | 1             | 16              | -                     | 488                  | 3300                        | 3300                        | 467            | 104.4             |
| 4/1         | Nutburn Rd                         | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 244                  | Inf                         | Inf                         | Inf            | 0.0               |
| 5/1         | Rownhams<br>Rd Left<br>Ahead Right | U            | N/A             | N/A                        | С          |                | 1             | 26              | -                     | 617                  | 2600                        | 2600                        | 585            | 105.5             |
| 6/1         | Rownhams<br>Rd                     | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 500                  | Inf                         | Inf                         | Inf            | 0.0               |
| 7/1         | Botley Rd<br>Ahead Right<br>Left   | U            | N/A             | N/A                        | D          |                | 1             | 42              | -                     | 792                  | 2800                        | 2800                        | 1003           | 78.9              |
| 8/1         | Botley Rd                          | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 1337                 | Inf                         | Inf                         | Inf            | 0.0               |

| Link<br>Num | Entering<br>(pcu) | Leaving (pcu) | Turners<br>In Gaps<br>(pcu) | Turners When<br>Unopposed<br>(pcu) | Turners In<br>Intergreen<br>(pcu) | Uniform<br>Delay<br>(pcuHr) | Rand +<br>Oversat<br>Delay<br>(pcuHr) | Storage<br>Area<br>Uniform<br>Delay<br>(pcuHr) | Total<br>Delay<br>(pcuHr) | Av. Delay<br>Per Veh<br>(s/pcu) | Max. Back<br>of Uniform<br>Queue<br>(pcu) | Rand +<br>Oversat<br>Queue<br>(pcu) | Mean Max<br>Queue<br>(pcu) |
|-------------|-------------------|---------------|-----------------------------|------------------------------------|-----------------------------------|-----------------------------|---------------------------------------|------------------------------------------------|---------------------------|---------------------------------|-------------------------------------------|-------------------------------------|----------------------------|
| 1/1         | 883               | 824           | -                           | -                                  | -                                 | 12.9                        | 35.6                                  | -                                              | 48.5                      | 197.7                           | 31.4                                      | 35.6                                | 67.0                       |
| 2/1         | 692               | 692           | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |
| 3/1         | 488               | 468           | -                           | -                                  | -                                 | 7.9                         | 17.3                                  | -                                              | 25.2                      | 185.8                           | 17.0                                      | 17.3                                | 34.3                       |
| 4/1         | 231               | 231           | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |
| 5/1         | 617               | 585           | -                           | -                                  | -                                 | 10.2                        | 22.8                                  | -                                              | 33.0                      | 192.4                           | 22.2                                      | 22.8                                | 45.0                       |
| 6/1         | 489               | 489           | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |
| 7/1         | 792               | 792           | -                           | -                                  | -                                 | 7.6                         | 1.8                                   | -                                              | 9.4                       | 42.8                            | 23.5                                      | 1.8                                 | 25.4                       |
| 8/1         | 1257              | 1257          | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |


PRC for Signalled Links (%): PRC Over All Links (%):

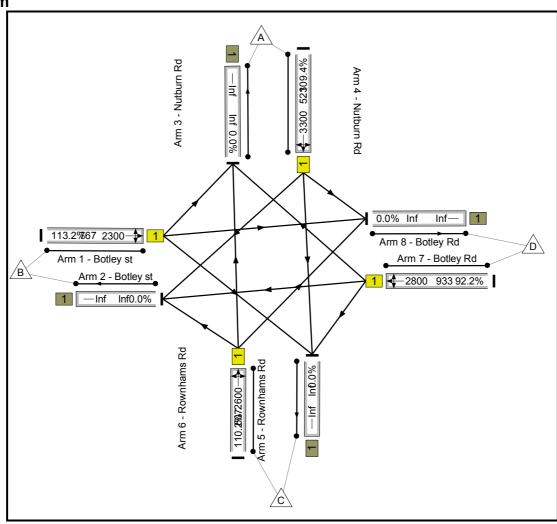
-19.0 -19.0 Total Delay for Signalled Links (pcuHr): 116.07 Total Delay Over All Links(pcuHr): 116.07

Cycle Time (s): 120

Scenario 3: '2031 Base' Staging Plan 1: 'AM Peak - Base'

Flow Group 4: '2031 Base'




**Stage Timings** 

| Stage        | 1  | 2  | 3  | 4  |
|--------------|----|----|----|----|
| Duration     | 39 | 6  | 18 | 27 |
| Change Point | 0  | 46 | 59 | 86 |





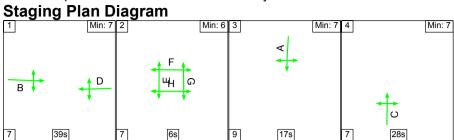
Junction Layout Diagram\_



### **Link Results**

| Link<br>Num | Link Desc                          | Link<br>Type | Stage<br>Stream | Position In Filtered Route | Full Phase | Arrow<br>Phase | Num<br>Greens | Total Green (s) | Arrow<br>Green<br>(s) | Demand<br>Flow (pcu) | Max Sat<br>Flow<br>(pcu/Hr) | Ave Sat<br>Flow<br>(pcu/Hr) | Capacity (pcu) | Deg<br>Sat<br>(%) |
|-------------|------------------------------------|--------------|-----------------|----------------------------|------------|----------------|---------------|-----------------|-----------------------|----------------------|-----------------------------|-----------------------------|----------------|-------------------|
| 1/1         | Botley st Left<br>Right Ahead      | U            | N/A             | N/A                        | В          |                | 1             | 39              | -                     | 868                  | 2300                        | 2300                        | 767            | 113.2             |
| 2/1         | Botley st                          | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 766                  | Inf                         | Inf                         | Inf            | 0.0               |
| 3/1         | Nutburn Rd<br>Right Ahead<br>Left  | U            | N/A             | N/A                        | А          |                | 1             | 18              | -                     | 571                  | 3300                        | 3300                        | 523            | 109.4             |
| 4/1         | Nutburn Rd                         | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 281                  | Inf                         | Inf                         | Inf            | 0.0               |
| 5/1         | Rownhams<br>Rd Left<br>Ahead Right | U            | N/A             | N/A                        | С          |                | 1             | 27              | -                     | 669                  | 2600                        | 2600                        | 607            | 110.2             |
| 6/1         | Rownhams<br>Rd                     | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 570                  | Inf                         | Inf                         | Inf            | 0.0               |
| 7/1         | Botley Rd<br>Ahead Right<br>Left   | U            | N/A             | N/A                        | D          |                | 1             | 39              | -                     | 861                  | 2800                        | 2800                        | 933            | 92.2              |
| 8/1         | Botley Rd                          | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 1352                 | Inf                         | Inf                         | Inf            | 0.0               |

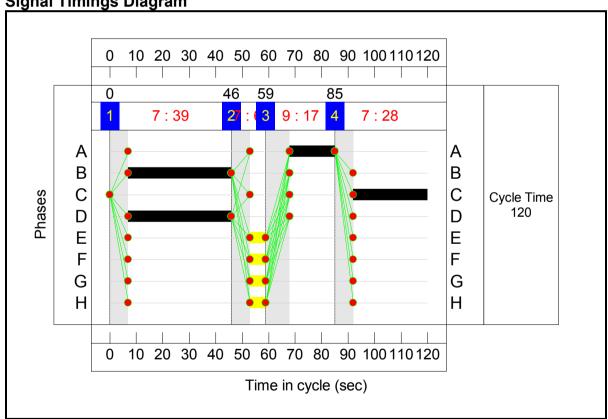
| Link<br>Num | Entering<br>(pcu) | Leaving<br>(pcu) | Turners<br>In Gaps<br>(pcu) | Turners When<br>Unopposed<br>(pcu) | Turners In<br>Intergreen<br>(pcu) | Uniform<br>Delay<br>(pcuHr) | Rand +<br>Oversat<br>Delay<br>(pcuHr) | Storage<br>Area<br>Uniform<br>Delay<br>(pcuHr) | Total<br>Delay<br>(pcuHr) | Av. Delay<br>Per Veh<br>(s/pcu) | Max. Back<br>of Uniform<br>Queue<br>(pcu) | Rand +<br>Oversat<br>Queue<br>(pcu) | Mean Max<br>Queue<br>(pcu) |   |
|-------------|-------------------|------------------|-----------------------------|------------------------------------|-----------------------------------|-----------------------------|---------------------------------------|------------------------------------------------|---------------------------|---------------------------------|-------------------------------------------|-------------------------------------|----------------------------|---|
| 1/1         | 868               | 767              | -                           | -                                  | -                                 | 15.6                        | 54.7                                  | -                                              | 70.3                      | 291.6                           | 32.3                                      | 54.7                                | 87.0                       |   |
| 2/1         | 749               | 749              | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |   |
| 3/1         | 571               | 523              | -                           | -                                  | -                                 | 10.2                        | 29.3                                  | -                                              | 39.5                      | 249.0                           | 20.7                                      | 29.3                                | 50.0                       |   |
| 4/1         | 255               | 255              | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |   |
| 5/1         | 669               | 607              | -                           | -                                  | -                                 | 12.9                        | 35.7                                  | -                                              | 48.6                      | 261.5                           | 25.9                                      | 35.7                                | 61.6                       |   |
| 6/1         | 544               | 544              | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |   |
| 7/1         | 861               | 861              | -                           | -                                  | -                                 | 9.2                         | 5.2                                   | -                                              | 14.4                      | 60.2                            | 27.5                                      | 5.2                                 | 32.7                       |   |
| 8/1         | 1209              | 1209             | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |   |
|             |                   |                  |                             |                                    |                                   |                             |                                       |                                                |                           |                                 |                                           |                                     |                            | — |


PRC for Signalled Links (%): PRC Over All Links (%):

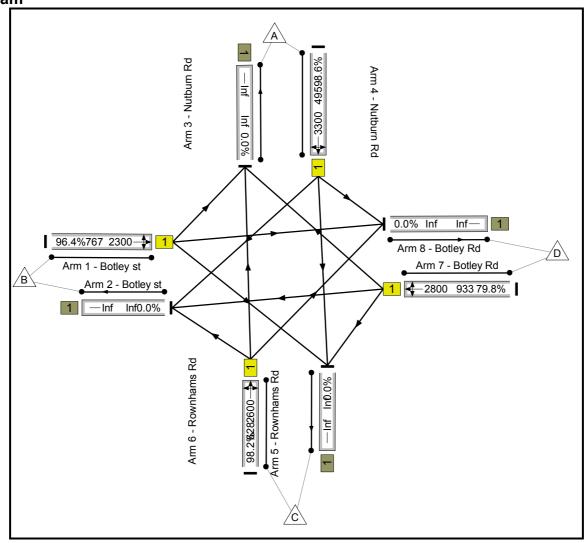
-25.8 -25.8 Total Delay for Signalled Links (pcuHr): 172.81 Total Delay Over All Links(pcuHr): 172.81

Cycle Time (s): 120

# Scenario 4: '2012 AM peak + NB Dev' Staging Plan 1: 'AM Peak - Base'


Flow Group 3: '2012 AM Peak + NB Dev only'




**Stage Timings** 

| Stage        | 1  | 2  | 3  | 4  |
|--------------|----|----|----|----|
| Duration     | 39 | 6  | 17 | 28 |
| Change Point | 0  | 46 | 59 | 85 |





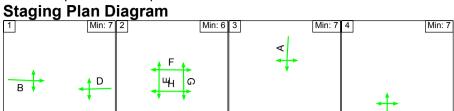
Junction Layout Diagram



# Link Results

| Link<br>Num | Link Desc                          | Link<br>Type | Stage<br>Stream | Position In Filtered Route | Full Phase | Arrow<br>Phase | Num<br>Greens | Total Green (s) | Arrow<br>Green<br>(s) | Demand<br>Flow (pcu) | Max Sat<br>Flow<br>(pcu/Hr) | Ave Sat<br>Flow<br>(pcu/Hr) | Capacity<br>(pcu) | Deg<br>Sat<br>(%) |
|-------------|------------------------------------|--------------|-----------------|----------------------------|------------|----------------|---------------|-----------------|-----------------------|----------------------|-----------------------------|-----------------------------|-------------------|-------------------|
| 1/1         | Botley st Left<br>Right Ahead      | U            | N/A             | N/A                        | В          |                | 1             | 39              | -                     | 739                  | 2300                        | 2300                        | 767               | 96.4              |
| 2/1         | Botley st                          | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 652                  | Inf                         | Inf                         | Inf               | 0.0               |
| 3/1         | Nutburn Rd<br>Right Ahead<br>Left  | U            | N/A             | N/A                        | А          |                | 1             | 17              | -                     | 488                  | 3300                        | 3300                        | 495               | 98.6              |
| 4/1         | Nutburn Rd                         | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 244                  | Inf                         | Inf                         | Inf               | 0.0               |
| 5/1         | Rownhams<br>Rd Left<br>Ahead Right | U            | N/A             | N/A                        | С          |                | 1             | 28              | -                     | 617                  | 2600                        | 2600                        | 628               | 98.2              |
| 6/1         | Rownhams<br>Rd                     | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 500                  | Inf                         | Inf                         | Inf               | 0.0               |
| 7/1         | Botley Rd<br>Ahead Right<br>Left   | U            | N/A             | N/A                        | D          |                | 1             | 39              | -                     | 745                  | 2800                        | 2800                        | 933               | 79.8              |
| 8/1         | Botley Rd                          | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 1193                 | Inf                         | Inf                         | Inf               | 0.0               |

| Link<br>Num | Entering<br>(pcu) | Leaving (pcu) | Turners<br>In Gaps<br>(pcu) | Turners When<br>Unopposed<br>(pcu) | Turners In<br>Intergreen<br>(pcu) | Uniform<br>Delay<br>(pcuHr) | Rand +<br>Oversat<br>Delay<br>(pcuHr) | Storage<br>Area<br>Uniform<br>Delay<br>(pcuHr) | Total<br>Delay<br>(pcuHr) | Av. Delay<br>Per Veh<br>(s/pcu) | Max. Back<br>of Uniform<br>Queue<br>(pcu) | Rand +<br>Oversat<br>Queue<br>(pcu) | Mean Max<br>Queue<br>(pcu) |  |
|-------------|-------------------|---------------|-----------------------------|------------------------------------|-----------------------------------|-----------------------------|---------------------------------------|------------------------------------------------|---------------------------|---------------------------------|-------------------------------------------|-------------------------------------|----------------------------|--|
| 1/1         | 739               | 739           | -                           | -                                  | -                                 | 8.1                         | 8.3                                   | -                                              | 16.4                      | 79.9                            | 24.0                                      | 8.3                                 | 32.4                       |  |
| 2/1         | 652               | 652           | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |
| 3/1         | 488               | 488           | -                           | -                                  | -                                 | 6.9                         | 9.4                                   | -                                              | 16.3                      | 120.5                           | 16.1                                      | 9.4                                 | 25.6                       |  |
| 4/1         | 244               | 244           | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |
| 5/1         | 617               | 617           | -                           | -                                  | -                                 | 7.8                         | 9.9                                   | -                                              | 17.7                      | 103.0                           | 20.4                                      | 9.9                                 | 30.3                       |  |
| 6/1         | 500               | 500           | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |
| 7/1         | 745               | 745           | -                           | -                                  | -                                 | 7.5                         | 1.9                                   | -                                              | 9.5                       | 45.7                            | 22.6                                      | 1.9                                 | 24.5                       |  |
| 8/1         | 1193              | 1193          | -                           | -                                  | -                                 | 0.0                         | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |
|             | PRC               | for Signalled | d Links (%):                | -9.5 To                            | otal Delay for Sig                | gnalled Links               | (pcuHr):                              | 59.85                                          |                           |                                 |                                           |                                     |                            |  |


PRC for Signalled Links (%): PRC Over All Links (%):

Total Delay for Signalled Links (pcuHr): Total Delay Over All Links(pcuHr): -9.5

59.85

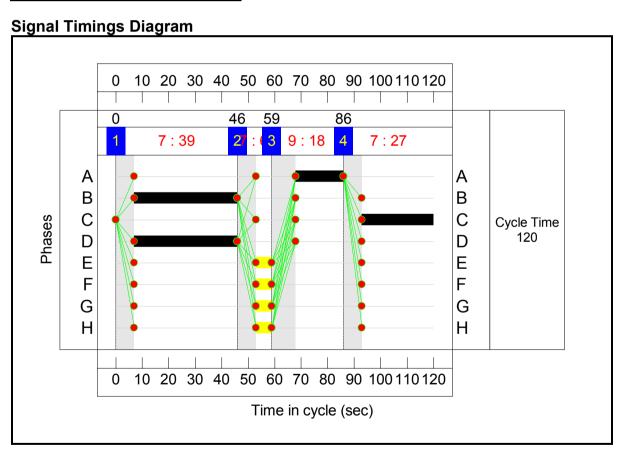
59.85 Cycle Time (s): 120

Scenario 5: '2012 AM Peak-Existing' Staging Plan 1: 'AM Peak - Base' Flow Group 5: '2012 AM peak'

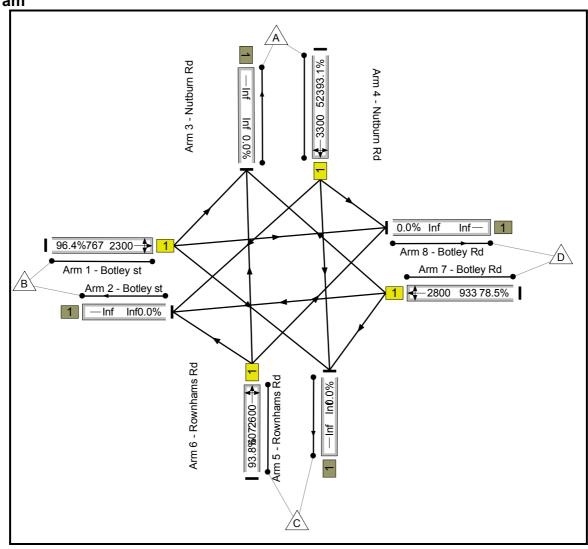


18s

27s


**Stage Timings** 

39s


| Stage        | 1  | 2  | 3  | 4  |
|--------------|----|----|----|----|
| Duration     | 39 | 6  | 18 | 27 |
| Change Point | 0  | 46 | 59 | 86 |

7

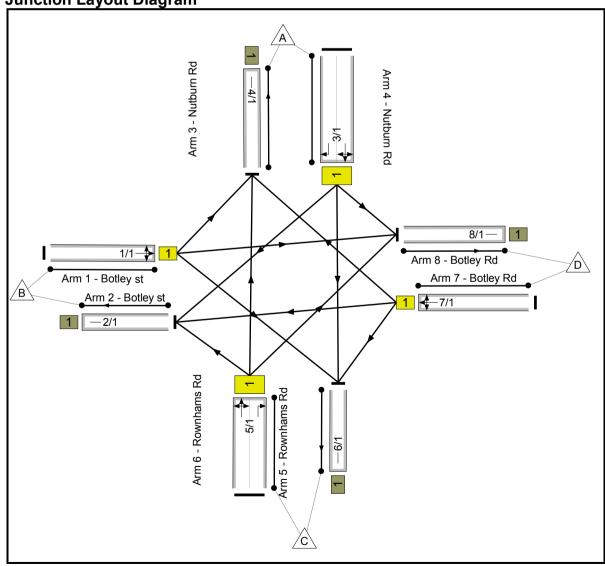
6s

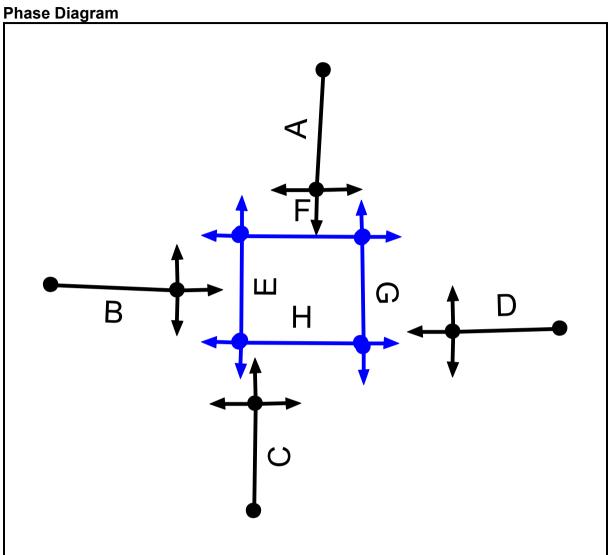


Junction Layout Diagram



### **Link Results**


| Link<br>Num | Link Desc                          | Link<br>Type | Stage<br>Stream | Position In Filtered Route | Full Phase | Arrow<br>Phase | Num<br>Greens | Total Green (s) | Arrow<br>Green<br>(s) | Demand<br>Flow (pcu) | Max Sat<br>Flow<br>(pcu/Hr) | Ave Sat<br>Flow<br>(pcu/Hr) | Capacity<br>(pcu) | Deg<br>Sat<br>(%) |
|-------------|------------------------------------|--------------|-----------------|----------------------------|------------|----------------|---------------|-----------------|-----------------------|----------------------|-----------------------------|-----------------------------|-------------------|-------------------|
| 1/1         | Botley st Left<br>Right Ahead      | U            | N/A             | N/A                        | В          |                | 1             | 39              | -                     | 739                  | 2300                        | 2300                        | 767               | 96.4              |
| 2/1         | Botley st                          | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 652                  | Inf                         | Inf                         | Inf               | 0.0               |
| 3/1         | Nutburn Rd<br>Right Ahead<br>Left  | U            | N/A             | N/A                        | А          |                | 1             | 18              | -                     | 486                  | 3300                        | 3300                        | 523               | 93.1              |
| 4/1         | Nutburn Rd                         | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 239                  | Inf                         | Inf                         | Inf               | 0.0               |
| 5/1         | Rownhams<br>Rd Left<br>Ahead Right | U            | N/A             | N/A                        | С          |                | 1             | 27              | -                     | 569                  | 2600                        | 2600                        | 607               | 93.8              |
| 6/1         | Rownhams<br>Rd                     | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 485                  | Inf                         | Inf                         | Inf               | 0.0               |
| 7/1         | Botley Rd<br>Ahead Right<br>Left   | U            | N/A             | N/A                        | D          |                | 1             | 39              | -                     | 733                  | 2800                        | 2800                        | 933               | 78.5              |
| 8/1         | Botley Rd                          | U            | N/A             | N/A                        | -          |                | -             | -               | -                     | 1151                 | Inf                         | Inf                         | Inf               | 0.0               |


| Link<br>Num | Entering<br>(pcu) | Leaving (pcu) | Turners<br>In Gaps<br>(pcu) | Turners When<br>Unopposed<br>(pcu) | Turners In<br>Intergreen<br>(pcu)       | Uniform<br>Delay<br>(pcuHr)     | Rand +<br>Oversat<br>Delay<br>(pcuHr) | Storage<br>Area<br>Uniform<br>Delay<br>(pcuHr) | Total<br>Delay<br>(pcuHr) | Av. Delay<br>Per Veh<br>(s/pcu) | Max. Back<br>of Uniform<br>Queue<br>(pcu) | Rand +<br>Oversat<br>Queue<br>(pcu) | Mean Max<br>Queue<br>(pcu) |  |
|-------------|-------------------|---------------|-----------------------------|------------------------------------|-----------------------------------------|---------------------------------|---------------------------------------|------------------------------------------------|---------------------------|---------------------------------|-------------------------------------------|-------------------------------------|----------------------------|--|
| 1/1         | 739               | 739           | -                           | -                                  | -                                       | 8.1                             | 8.3                                   | -                                              | 16.4                      | 79.8                            | 24.0                                      | 8.3                                 | 32.3                       |  |
| 2/1         | 652               | 652           | -                           | -                                  | -                                       | 0.0                             | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |
| 3/1         | 486               | 486           | -                           | -                                  | -                                       | 6.7                             | 5.2                                   | -                                              | 11.9                      | 88.5                            | 15.9                                      | 5.2                                 | 21.2                       |  |
| 4/1         | 239               | 239           | -                           | -                                  | -                                       | 0.0                             | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |
| 5/1         | 569               | 569           | -                           | -                                  | -                                       | 7.1                             | 5.8                                   | -                                              | 12.9                      | 81.8                            | 18.5                                      | 5.8                                 | 24.3                       |  |
| 6/1         | 485               | 485           | -                           | -                                  | -                                       | 0.0                             | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |
| 7/1         | 733               | 733           | -                           | -                                  | -                                       | 7.4                             | 1.8                                   | -                                              | 9.1                       | 44.9                            | 22.0                                      | 1.8                                 | 23.8                       |  |
| 8/1         | 1151              | 1151          | -                           | -                                  | -                                       | 0.0                             | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |
|             |                   |               | Links (%):<br>Links (%):    | -7.1 To                            | otal Delay for Signature<br>Total Delay | gnalled Links<br>Over All Links |                                       | 50.40<br>50.40 Cycl                            | e Time (s):               | 120                             |                                           |                                     |                            |  |

**User and Project Details** 

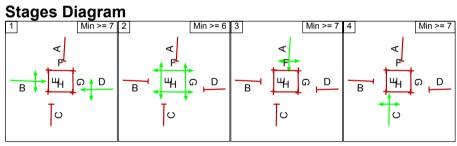
| Project:    | North Baddesley Cross Roads                  |
|-------------|----------------------------------------------|
| Title:      | Rownhams Road/Nutburn Road Two Lane Scenario |
| Location:   |                                              |
| File name:  | 2 lane scen_2012.lsgx                        |
| Author:     |                                              |
| Company:    |                                              |
| Address:    |                                              |
| Controller: | Generic                                      |
| SCN:        |                                              |
| Notes:      |                                              |

**Junction Layout Diagram** 





# Phase Input Data


| Phase Name | Phase type | Assoc Phase | Street Min | Cont Min |
|------------|------------|-------------|------------|----------|
| А          | Traffic    |             | 7          | 7        |
| В          | Traffic    |             | 7          | 7        |
| С          | Traffic    |             | 7          | 7        |
| D          | Traffic    |             | 7          | 7        |
| Е          | Pedestrian |             | 6          | 6        |
| F          | Pedestrian |             | 6          | 6        |
| G          | Pedestrian |             | 6          | 6        |
| Н          | Pedestrian |             | 6          | 6        |

**Phase Intergreens Matrix** 

|                      | Starting Phase |   |   |   |   |   |   |   |   |
|----------------------|----------------|---|---|---|---|---|---|---|---|
|                      |                | Α | В | С | D | Е | F | G | I |
|                      | Α              |   | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
|                      | В              | 7 |   | 7 | - | 7 | 7 | 7 | 7 |
|                      | С              | 7 | 7 |   | 7 | 7 | 7 | 7 | 7 |
| Terminating<br>Phase | D              | 7 | - | 7 |   | 7 | 7 | 7 | 7 |
|                      | Е              | 9 | 9 | 9 | 9 |   | - | - | 1 |
|                      | F              | 9 | 9 | 9 | 9 | - |   | - | 1 |
|                      | G              | 9 | 9 | 9 | 9 | - | - |   | - |
|                      | Н              | 9 | 9 | 9 | 9 | - | - | - |   |

**Phases in Stage** 

| Stage No. | Phases in Stage |
|-----------|-----------------|
| 1         | B D             |
| 2         | EFGH            |
| 3         | А               |
| 4         | С               |



## **Phase Delays**

There are no phase delays defined in this stage stream

## **Prohibited Stage Changes**

|               | To Stage |   |   |   |   |  |  |
|---------------|----------|---|---|---|---|--|--|
|               |          | 1 | 2 | 3 | 4 |  |  |
|               | 1        |   | 7 | 7 | 7 |  |  |
| From<br>Stage | 2        | 9 |   | 9 | 9 |  |  |
| ou.go         | 3        | 7 | 7 |   | 7 |  |  |
|               | 4        | 7 | 7 | 7 |   |  |  |

Link Input Data

| Arm/<br>Link | Link Name                       | Link<br>Type | Num<br>Lanes | Phases | Start<br>Disp. | End<br>Disp. |
|--------------|---------------------------------|--------------|--------------|--------|----------------|--------------|
| 1/1          | Botley st Left Right Ahead      | U            | 1            | В      | 2              | 3            |
| 2/1          | Botley st                       | U            | 1            |        | 2              | 3            |
| 3/1          | Nutburn Rd Right Ahead Left     | U            | 2            | Α      | 2              | 3            |
| 4/1          | Nutburn Rd                      | U            | 1            |        | 2              | 3            |
| 5/1          | Rownhams Rd Left Ahead<br>Right | U            | 2            | С      | 2              | 3            |
| 6/1          | Rownhams Rd                     | U            | 1            |        | 2              | 3            |
| 7/1          | Botley Rd Ahead Right Left      | U            | 1            | D      | 2              | 3            |
| 8/1          | Botley Rd                       | U            | 1            |        | 2              | 3            |

# Give-Way Link Input Data Lane Input Data

| Arm/<br>Lane                   | Link<br>Num                              | Physical<br>Length<br>(PCU) | Expected<br>Usage<br>(PCU) | Sat<br>Flow<br>Type | User<br>Saturation<br>Flow<br>(PCU/Hr) | Lane<br>Width<br>(m) | Gradient | Nearside<br>Lane | Allowed<br>Turns                | Turning<br>Radius<br>(m) |
|--------------------------------|------------------------------------------|-----------------------------|----------------------------|---------------------|----------------------------------------|----------------------|----------|------------------|---------------------------------|--------------------------|
|                                |                                          |                             |                            |                     |                                        |                      |          |                  | Arm 4 Left<br>(Nutburn Rd)      | 15.00                    |
| 1/1<br>(Botley st Lane 1)      | Link 1 (Botley st Left Right Ahead)      | Inf                         | Inf                        | User                | 2300                                   | 4.00                 | 0.00     | N                | Arm 6 Right<br>(Rownhams<br>Rd) | 25.00                    |
|                                |                                          |                             |                            |                     |                                        |                      |          |                  | Arm 8 Ahead<br>(Botley Rd)      | Inf                      |
| 2/1<br>(Botley st Lane 1)      | Link 1 (Botley st)                       | Inf                         | Inf                        | Inf (Exit)          | 1800                                   | 5.00                 | 0.00     | N                |                                 |                          |
|                                |                                          |                             |                            |                     |                                        |                      |          |                  | Arm 2 Right<br>(Botley st)      | Inf                      |
| 3/1<br>(Nutburn Rd Lane 1)     | Link 1 (Nutburn Rd Right Ahead<br>Left)  | Inf                         | Inf                        | User                | 3300                                   | 2.75                 | 0.00     | Y                | Arm 6 Ahead<br>(Rownhams<br>Rd) | Inf                      |
|                                |                                          |                             |                            |                     |                                        |                      |          |                  | Arm 8 Left<br>(Botley Rd)       | 15.00                    |
| 3/2<br>(Nutburn Rd Lane 2)     | Link 1 (Nutburn Rd Right Ahead<br>Left)  | Inf                         | Inf                        | User                | 1800                                   | 3.25                 | 0.00     | Y                | Arm 2 Right<br>(Botley st)      | Inf                      |
| 4/1<br>(Nutburn Rd Lane 1)     | Link 1 (Nutburn Rd)                      | Inf                         | Inf                        | Inf (Exit)          | 1800                                   | 4.00                 | 0.00     | N                |                                 |                          |
|                                |                                          |                             |                            |                     |                                        |                      |          |                  | Arm 2 Left<br>(Botley st)       | 14.00                    |
| 5/1<br>(Rownhams Rd Lane<br>1) | Link 1 (Rownhams Rd Left Ahead<br>Right) | Inf                         | Inf                        | User                | 2600                                   | 5.00                 | 0.00     | Y                | Arm 4 Ahead<br>(Nutburn Rd)     | Inf                      |
| · ,                            | /                                        |                             |                            |                     |                                        |                      |          |                  | Arm 8 Right<br>(Botley Rd)      | 25.00                    |

| 5/2<br>(Rownhams Rd Lane<br>2) | Link 1 (Rownhams Rd Left Ahead<br>Right) | Inf | Inf | User       | 1800 | 3.25 | 0.00 | Y | Arm 8 Right<br>(Botley Rd)     | Inf   |
|--------------------------------|------------------------------------------|-----|-----|------------|------|------|------|---|--------------------------------|-------|
| 6/1<br>(Rownhams Rd Lane<br>1) | Link 1 (Rownhams Rd)                     | Inf | Inf | Inf (Exit) | 1800 | 3.66 | 0.00 | N |                                |       |
|                                |                                          | Inf | Inf | User       | 2800 | 4.00 | 0.00 | N | Arm 2 Ahead<br>(Botley st)     | Inf   |
| 7/1<br>(Botley Rd Lane 1)      | Link 1 (Botley Rd Ahead Right Left)      |     |     |            |      |      |      |   | Arm 4 Right<br>(Nutburn Rd)    | 25.00 |
| (Boiley No Edille 1)           |                                          |     |     |            |      |      |      |   | Arm 6 Left<br>(Rownhams<br>Rd) | 15.00 |
| 8/1<br>(Botley Rd Lane 1)      | Link 1 (Botley Rd)                       | Inf | Inf | Inf (Exit) | 1800 | 3.25 | 0.00 | Υ |                                |       |

**Traffic Flow Groups** 

| Flow Group                  | Start Time | End Time | Duration | Formula |
|-----------------------------|------------|----------|----------|---------|
| 1: '2012 AM Peak + All DEv' | 08:00      | 09:00    | 01:00    |         |

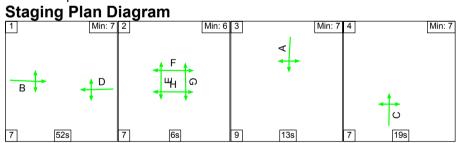
Flow Group 1: '2012 AM Peak + All DEv'

Traffic Flow Matrix

**Desired Flow:** 

|        | Destination |     |     |     |      |      |  |  |  |
|--------|-------------|-----|-----|-----|------|------|--|--|--|
|        |             | Α   | В   | С   | D    | Tot. |  |  |  |
|        | Α           | 0   | 159 | 244 | 85   | 488  |  |  |  |
| Origin | B 71        |     | 0   | 14  | 798  | 883  |  |  |  |
| Origin | С           | 151 | 12  | 0   | 454  | 617  |  |  |  |
|        | D           | 22  | 528 | 242 | 0    | 792  |  |  |  |
|        | Tot.        | 244 | 699 | 500 | 1337 | 2780 |  |  |  |

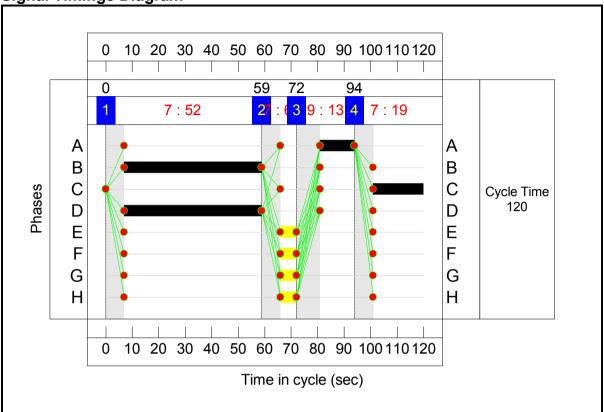
#### **Link Traffic Flows**


| Arm/Link | Flow<br>Group 1:<br>2012 AM<br>Peak + All<br>DEv |
|----------|--------------------------------------------------|
| 1/1      | 883                                              |
| 2/1      | 699                                              |
| 3/1      | 488                                              |
| 4/1      | 244                                              |
| 5/1      | 617                                              |
| 6/1      | 500                                              |
| 7/1      | 792                                              |
| 8/1      | 1337                                             |

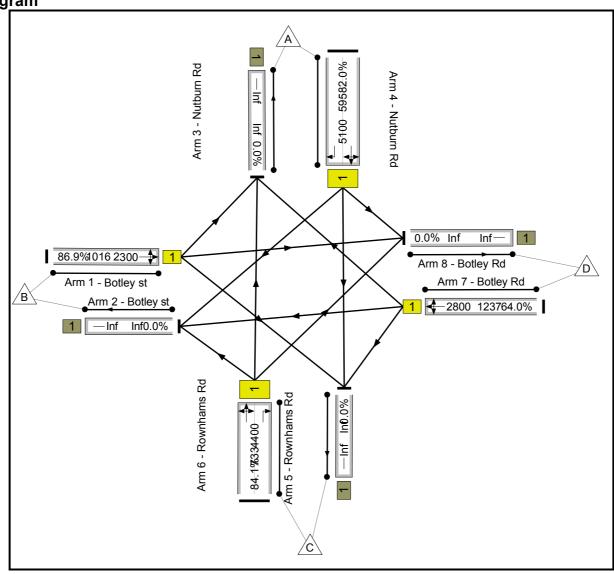
#### **Lane Saturation Flows**

| Arm/<br>Lane                | Lane<br>Width<br>(m)                               | Gradient                                          | Nearside<br>Lane | Allowed<br>Turns | Turning<br>Radius<br>(m) | Turning<br>Prop. | Sat flow<br>(PCU/Hr) |  |  |
|-----------------------------|----------------------------------------------------|---------------------------------------------------|------------------|------------------|--------------------------|------------------|----------------------|--|--|
| 1/1<br>(Botley st Lane 1)   |                                                    | This lane uses a directly entered Saturation Flow |                  |                  |                          |                  |                      |  |  |
| 2/1<br>(Botley st Lane 1)   | 5.00                                               | 0.00                                              | N                |                  |                          |                  | 2255                 |  |  |
| 3/1<br>(Nutburn Rd Lane 1)  |                                                    | This lane uses a directly entered Saturation Flow |                  |                  |                          |                  |                      |  |  |
| 3/2<br>(Nutburn Rd Lane 2)  | I his land uses a directly entered Saturation Flow |                                                   |                  |                  |                          |                  |                      |  |  |
| 4/1<br>(Nutburn Rd Lane 1)  | 4.00                                               | 0.00                                              | N                |                  |                          |                  | 2155                 |  |  |
| 5/1<br>(Rownhams Rd Lane 1) |                                                    | This lane uses a directly entered Saturation Flow |                  |                  |                          |                  |                      |  |  |
| 5/2<br>(Rownhams Rd Lane 2) | This long upon a directly entered Saturation Flow  |                                                   |                  |                  |                          |                  | 1800                 |  |  |
| 6/1<br>(Rownhams Rd Lane 1) | 3.66                                               | 0.00                                              | N                |                  |                          |                  | 2121                 |  |  |
| 7/1<br>(Botley Rd Lane 1)   | This lane uses a directly entered Saturation Flow  |                                                   |                  |                  |                          |                  | 2800                 |  |  |
| 8/1<br>(Botley Rd Lane 1)   | Infinite Saturation Flow (on Exit Link)            |                                                   |                  |                  |                          |                  | Inf                  |  |  |

#### Scenario 1: 'NB AM Peak - With Dev'


Staging Plan 2: 'AM Peak - With Dev' Flow Group 1: '2012 AM Peak + All DEv'




**Stage Timings** 

| Stage        | 1  | 2  | 3  | 4  |
|--------------|----|----|----|----|
| Duration     | 52 | 6  | 13 | 19 |
| Change Point | 0  | 59 | 72 | 94 |





**Junction Layout Diagram** 



#### **Link Results**

|             | itesuits                           |              |                 |                               |            |                |               |                 |                       |                      |                             |                             |                |                   |
|-------------|------------------------------------|--------------|-----------------|-------------------------------|------------|----------------|---------------|-----------------|-----------------------|----------------------|-----------------------------|-----------------------------|----------------|-------------------|
| Link<br>Num | Link Desc                          | Link<br>Type | Stage<br>Stream | Position In<br>Filtered Route | Full Phase | Arrow<br>Phase | Num<br>Greens | Total Green (s) | Arrow<br>Green<br>(s) | Demand<br>Flow (pcu) | Max Sat<br>Flow<br>(pcu/Hr) | Ave Sat<br>Flow<br>(pcu/Hr) | Capacity (pcu) | Deg<br>Sat<br>(%) |
| 1/1         | Botley st Left<br>Right Ahead      | U            | N/A             | N/A                           | В          |                | 1             | 52              | -                     | 883                  | 2300                        | 2300                        | 1016           | 86.9              |
| 2/1         | Botley st                          | U            | N/A             | N/A                           | -          |                | -             | -               | -                     | 699                  | Inf                         | Inf                         | Inf            | 0.0               |
| 3/1         | Nutburn Rd<br>Right Ahead<br>Left  | U            | N/A             | N/A                           | А          |                | 1             | 13              | -                     | 488                  | 5100                        | 5100                        | 595            | 82.0              |
| 4/1         | Nutburn Rd                         | U            | N/A             | N/A                           | -          |                | -             | -               | -                     | 244                  | Inf                         | Inf                         | Inf            | 0.0               |
| 5/1         | Rownhams<br>Rd Left<br>Ahead Right | U            | N/A             | N/A                           | С          |                | 1             | 19              | -                     | 617                  | 4400                        | 4400                        | 733            | 84.1              |
| 6/1         | Rownhams<br>Rd                     | U            | N/A             | N/A                           | -          |                | -             | -               | -                     | 500                  | Inf                         | Inf                         | Inf            | 0.0               |
| 7/1         | Botley Rd<br>Ahead Right<br>Left   | U            | N/A             | N/A                           | D          |                | 1             | 52              | -                     | 792                  | 2800                        | 2800                        | 1237           | 64.0              |
| 8/1         | Botley Rd                          | U            | N/A             | N/A                           | -          |                | -             | -               | -                     | 1337                 | Inf                         | Inf                         | Inf            | 0.0               |

| Link<br>Num | Entering<br>(pcu) | Leaving (pcu) | Turners<br>In Gaps<br>(pcu)   | Turners When<br>Unopposed<br>(pcu) | Turners In<br>Intergreen<br>(pcu) | Uniform<br>Delay<br>(pcuHr)     | Rand +<br>Oversat<br>Delay<br>(pcuHr) | Storage<br>Area<br>Uniform<br>Delay<br>(pcuHr) | Total<br>Delay<br>(pcuHr) | Av. Delay<br>Per Veh<br>(s/pcu) | Max. Back<br>of Uniform<br>Queue<br>(pcu) | Rand +<br>Oversat<br>Queue<br>(pcu) | Mean Max<br>Queue<br>(pcu) |  |
|-------------|-------------------|---------------|-------------------------------|------------------------------------|-----------------------------------|---------------------------------|---------------------------------------|------------------------------------------------|---------------------------|---------------------------------|-------------------------------------------|-------------------------------------|----------------------------|--|
| 1/1         | 883               | 883           | -                             | -                                  | -                                 | 7.4                             | 3.2                                   | -                                              | 10.6                      | 43.3                            | 26.5                                      | 3.2                                 | 29.7                       |  |
| 2/1         | 699               | 699           | -                             | -                                  | -                                 | 0.0                             | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |
| 3/1         | 488               | 488           | -                             | -                                  | -                                 | 7.0                             | 2.2                                   | -                                              | 9.2                       | 67.9                            | 15.9                                      | 2.2                                 | 18.1                       |  |
| 4/1         | 244               | 244           | -                             | -                                  | -                                 | 0.0                             | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |
| 5/1         | 617               | 617           | -                             | -                                  | -                                 | 8.3                             | 2.5                                   | -                                              | 10.8                      | 63.3                            | 19.9                                      | 2.5                                 | 22.4                       |  |
| 6/1         | 500               | 500           | -                             | -                                  | -                                 | 0.0                             | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |
| 7/1         | 792               | 792           | -                             | -                                  | -                                 | 5.7                             | 0.9                                   | -                                              | 6.6                       | 30.1                            | 20.5                                      | 0.9                                 | 21.3                       |  |
| 8/1         | 1337              | 1337          | -                             | -                                  | -                                 | 0.0                             | 0.0                                   | -                                              | 0.0                       | 0.0                             | 0.0                                       | 0.0                                 | 0.0                        |  |
|             |                   |               | d Links (%):<br>Il Links (%): | 3.5 To<br>3.5                      | otal Delay for Si<br>Total Delay  | gnalled Links<br>Over All Links | \ ,                                   | 37.30<br>37.30 Cycl                            | le Time (s):              | 120                             |                                           |                                     |                            |  |